博碩士論文 106223030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.226.245.48
姓名 林汶政(Wen-Zheng Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 研究與合成應用於太陽能電池之新穎三聯噻吩類型電洞傳輸材料
(Synthesis and Study of Novel Terthiophene-Based Hole-Transporting Materials Applying to Solar Cells)
相關論文
★ 固相組合式合成Dioxopiperazine與Carbolinone衍生物★ 一、開發組合式藥物合成所需具安全閥(Safety Catch)之鍵鏈劑 二、開發新型紫外光吸收劑
★ 1. 固相組合式合成benzoimidazolone 衍生物 2. 研發新型有機盤狀液晶★ 一、液相合成carbolinone衍生物 二、有機雜環液晶之合成與探討
★ 1. 具安全閥(safety-catch)之新型鍵鏈劑應用於組合式化學之合成 2. 合成含羧酸基短鏈式之有機污染衍生物★ 合成新穎非可逆擬胜肽小分子蛋 白質酪胺酸磷酸酶 1B 抑制劑
★ 固相組合式合成Isoquinolinone及Carbolinone 衍生物★ 利用固相合成方法開發新型紫外線吸收劑 (UV-absorbers)
★ 研發及製備銥(Ir)金屬環狀錯合物之 新型Ligand★ 合成銥金屬錯合物發光材料
★ 開發固相合成法製備銥(Ir)錯合物之發光體★ 1.合成環境荷爾蒙烷基酚聚乙氧基酸衍生物 2.固相組合式合成蛋白質酪胺酸磷酸
★ 設計與合成銥金屬錯合物藍光材料★ 開發可應用於組合式合成烯類化合物之新型具安全閥鍵鏈劑
★ 利用有機金屬組合式合成加速紅色磷光材料的篩選與開發★ 固相組合式合成新穎蛋白質酪胺酸磷酸酶1B抑制劑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-1以後開放)
摘要(中) 鈣鈦礦太陽能電池之光電轉換效率在近年已由4%大幅成長到23%,欲提升效率,研發一種更能有效提取電洞並傳遞電洞之電洞傳輸材料為重要關鍵之一。
本篇設計了以三聯噻吩(2,2′:5′,2"-terthiophene)為主體之電洞傳輸材料WZ40、WZ102、WZ103,藉由改變拉推電子基的強弱,觀察其對光電轉換效率的影響。WZ系列之材料皆展現出非晶態特性,且有合適的熱穩定性,其中WZ102在鈣鈦礦太陽能電池中的光電轉換效率可達11.91%,優於PEDOT:PSS的10.23%,是一款應用在鈣鈦礦太陽能電池上相當具有潛力之電洞傳輸材料。
摘要(英) The power conversion efficiency(PCE)of perovskite solar cells(PSCs)has shown a significant enhancement from 3.8 % in 2009 to 23.7 % in 2018. To increase the PCE, developing a hole-transporting material(HTM)which has superior ability of positive charge extraction and transportation is one of the important factors.
In this article, three terthiophene-based hole-transporting materials named WZ40, WZ102, WZ103 have been synthesized. The compounds of WZ series exhibit amorphous property and appropriate thermal stability. However, the perovskite solar cell employing WZ102 generates a power conversion efficiency of 11.91 %, which is higher than the power conversion efficiency of 10.23 % based on PEDOT:PSS. The better performance gives it potential as a promising HTM for the further advance of PSCs.
關鍵字(中) ★ 電洞傳輸材料
★ 鈣鈦礦太陽能電池
★ 三聯噻吩
關鍵字(英) ★ Hole-Transporting Material
★ Perovskite
★ Terthiophene
論文目次 目 錄
中文摘要 i
Abstract ii
誌謝辭 iii
目錄 iv
圖目錄 v
表目錄 vii
一、緒論 1
1-1 前言 1
1-2 太陽能電池 4
1-3 鈣鈦礦太陽能電池 4
1-4 電流電壓曲線圖及能量轉換效率相關特性 10
1-5 電洞傳輸材料之文獻回顧 13
二、結構設計概念與動機 17
2-1 合成策略 21
三、結果討論 26
3-1 物理與化學性質探討 26
3-2 元件效率測試 36
3-3 總結與未來展望 36
四、實驗步驟與材料數據 39
4-1 實驗藥品 39
4-2 實驗儀器 39
4-3 實驗步驟 42
參考文獻 55
附錄 64
參考文獻 1. Wu, B.; Fu, K.; Yantara, N.; Xing, G.; Sun, S.; Sum, T. C.; Mathews, N., Charge Accumulation and Hysteresis in Perovskite-Based Solar Cells: An Electro-Optical Analysis. Adv. Energy Mater. 2015, 5 (19), 1500829.
2. Nemnes, G. A.; Besleaga, C.; Stancu, V.; Dogaru, D. E.; Leonat, L. N.; Pintilie, L.; Torfason, K.; Ilkov, M.; Manolescu, A.; Pintilie, I., Normal and Inverted Hysteresis in Perovskite Solar Cells. The Journal of Physical Chemistry C 2017, 121 (21), 11207-11214.
3. Meng, L.; You, J.; Guo, T.-F.; Yang, Y., Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. Accounts of Chemical Research 2016, 49 (1), 155-165.
4. Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science 2015, 8 (5), 1602-1608.
5. Mohamad Noh, M. F.; Teh, C. H.; Daik, R.; Lim, E. L.; Yap, C. C.; Ibrahim, M. A.; Ahmad Ludin, N.; Mohd Yusoff, A. R. b.; Jang, J.; Mat Teridi, M. A., The architecture of the electron transport layer for a perovskite solar cell. Journal of Materials Chemistry C 2018, 6 (4), 682-712.
6. Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G., Recent progress in electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A 2016, 4 (11), 3970-3990.
7. Said, A. A.; Xie, J.; Zhang, Q., Recent Progress in Organic Electron Transport Materials in Inverted Perovskite Solar Cells. Small 2019, 15 (27), 1900854.
8. Luo, D.; Yang, W.; Wang, Z.; Sadhanala, A.; Hu, Q.; Su, R.; Shivanna, R.; Trindade, G. F.; Watts, J. F.; Xu, Z.; Liu, T.; Chen, K.; Ye, F.; Wu, P.; Zhao, L.; Wu, J.; Tu, Y.; Zhang, Y.; Yang, X.; Zhang, W.; Friend, R. H.; Gong, Q.; Snaith, H. J.; Zhu, R., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 2018, 360 (6396), 1442-1446.
9. Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science 2016, 9 (6), 1989-1997.
10. Kung, P.-K.; Li, M.-H.; Lin, P.-Y.; Chiang, Y.-H.; Chan, C.-R.; Guo, T.-F.; Chen, P., A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells. Advanced Materials Interfaces 2018, 5 (22), 1800882.
11. Yan, W.; Ye, S.; Li, Y.; Sun, W.; Rao, H.; Liu, Z.; Bian, Z.; Huang, C., Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells. Adv. Energy Mater. 2016, 6 (17), 1600474.
12. Sawada, T.; Yamagami, M.; Ohara, K.; Yamaguchi, K.; Fujita, M., Peptide [4]Catenane by Folding and Assembly. 2016, 55 (14), 4519-4522.
13. Wang, R.; Mujahid, M.; Duan, Y.; Wang, Z.-K.; Xue, J.; Yang, Y., A Review of Perovskites Solar Cell Stability. Advanced Functional Materials 2019, 0 (0), 1808843.
14. Wright, M.; Uddin, A., Organic—inorganic hybrid solar cells: A comparative review. Solar Energy Materials and Solar Cells 2012, 107, 87-111.
15. Qi, B.; Wang, J., Open-circuit voltage in organic solar cells. Journal of Materials Chemistry 2012, 22 (46), 24315-24325.
16. Tress, W.; Marinova, N.; Inganäs, O.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Graetzel, M., Predicting the Open-Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non-Radiative Recombination. Advanced Energy Materials 2015, 5 (3), 1400812.
17. Suarez, B.; Gonzalez-Pedro, V.; Ripolles, T. S.; Sanchez, R. S.; Otero, L.; Mora-Sero, I., Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2014, 5 (10), 1628-1635.
18. Zhu, L.; Xiao, J.; Shi, J.; Wang, J.; Lv, S.; Xu, Y.; Luo, Y.; Xiao, Y.; Wang, S.; Meng, Q.; Li, X.; Li, D. J. N. R., Efficient CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP hole-transporting layers. Nano Research 2015, 8 (4), 1116-1127.
19. Petrus, M. L.; Bein, T.; Dingemans, T. J.; Docampo, P., A low cost azomethine-based hole transporting material for perovskite photovoltaics. Journal of Materials Chemistry A 2015, 3 (23), 12159-12162.
20. Christians, J. A.; Schulz, P.; Tinkham, J. S.; Schloemer, T. H.; Harvey, S. P.; Tremolet de Villers, B. J.; Sellinger, A.; Berry, J. J.; Luther, J. M., Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability. Nature Energy 2018, 3 (1), 68-74.
21. Cho, I.; Jeon, N. J.; Kwon, O. K.; Kim, D. W.; Jung, E. H.; Noh, J. H.; Seo, J.; Seok, S. I.; Park, S. Y., Indolo[3,2-b]indole-based crystalline hole-transporting material for highly efficient perovskite solar cells. Chemical Science 2017, 8 (1), 734-741.
22. Li, Y.; Xu, Z.; Zhao, S.; Qiao, B.; Huang, D.; Zhao, L.; Zhao, J.; Wang, P.; Zhu, Y.; Li, X.; Liu, X.; Xu, X., Highly Efficient p-i-n Perovskite Solar Cells Utilizing Novel Low-Temperature Solution-Processed Hole Transport Materials with Linear π-Conjugated Structure. Small 2016, 12 (35), 4902-4908.
23. Li, Y.; Cole, M. D.; Gao, Y.; Emrick, T.; Xu, Z.; Liu, Y.; Russell, T. P., High-Performance Perovskite Solar Cells with a Non-doped Small Molecule Hole Transporting Layer. ACS Applied Energy Materials 2019, 2 (3), 1634-1641.
24. Molina-Ontoria, A.; Zimmermann, I.; Garcia-Benito, I.; Gratia, P.; Roldán-Carmona, C.; Aghazada, S.; Graetzel, M.; Nazeeruddin, M. K.; Martín, N., Benzotrithiophene-Based Hole-Transporting Materials for 18.2 % Perovskite Solar Cells. Angewandte Chemie International Edition 2016, 55 (21), 6270-6274.
25. Xu, B.; Sheibani, E.; Liu, P.; Zhang, J.; Tian, H.; Vlachopoulos, N.; Boschloo, G.; Kloo, L.; Hagfeldt, A.; Sun, L., Carbazole-Based Hole-Transport Materials for Efficient Solid-State Dye-Sensitized Solar Cells and Perovskite Solar Cells. Advanced Materials 2014, 26 (38), 6629-6634.
26. Huang, C.; Fu, W.; Li, C.-Z.; Zhang, Z.; Qiu, W.; Shi, M.; Heremans, P.; Jen, A. K. Y.; Chen, H., Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells. Journal of the American Chemical Society 2016, 138 (8), 2528-2531.
27. Chen, H.; Fu, W.; Huang, C.; Zhang, Z.; Li, S.; Ding, F.; Shi, M.; Li, C.-Z.; Jen, A. K.-Y.; Chen, H., Molecular Engineered Hole-Extraction Materials to Enable Dopant-Free, Efficient p-i-n Perovskite Solar Cells. Advanced Energy Materials 2017, 7 (18), 1700012.
28. Wang, Y.-K.; Yuan, Z.-C.; Shi, G.-Z.; Li, Y.-X.; Li, Q.; Hui, F.; Sun, B.-Q.; Jiang, Z.-Q.; Liao, L.-S., Dopant-Free Spiro-Triphenylamine/Fluorene as Hole-Transporting Material for Perovskite Solar Cells with Enhanced Efficiency and Stability. Advanced Functional Materials 2016, 26 (9), 1375-1381.
29. Xu, B.; Zhang, J.; Hua, Y.; Liu, P.; Wang, L.; Ruan, C.; Li, Y.; Boschloo, G.; Johansson, E. M. J.; Kloo, L.; Hagfeldt, A.; Jen, A. K. Y.; Sun, L., Tailor-Making Low-Cost Spiro[fluorene-9,9′-xanthene]-Based 3D Oligomers for Perovskite Solar Cells. Chem 2017, 2 (5), 676-687.
30. Ganesan, P.; Fu, K.; Gao, P.; Raabe, I.; Schenk, K.; Scopelliti, R.; Luo, J.; Wong, L. H.; Grätzel, M.; Nazeeruddin, M. K., A simple spiro-type hole transporting material for efficient perovskite solar cells. Energy & Environmental Science 2015, 8 (7), 1986-1991.
31. Saliba, M.; Orlandi, S.; Matsui, T.; Aghazada, S.; Cavazzini, M.; Correa-Baena, J.-P.; Gao, P.; Scopelliti, R.; Mosconi, E.; Dahmen, K.-H.; De Angelis, F.; Abate, A.; Hagfeldt, A.; Pozzi, G.; Graetzel, M.; Nazeeruddin, M. K., A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature Energy 2016, 1, 15017.
32. Bai, L.; Wang, Z.; Han, Y.; Zuo, Z.; Liu, B.; Yu, M.; Zhang, H.; Lin, J.; Xia, Y.; Yin, C.; Xie, L.; Chen, Y.; Lin, Z.; Wang, J.; Huang, W., Diarylfluorene-based nano-molecules as dopant-free hole-transporting materials without post-treatment process for flexible p-i-n type perovskite solar cells. Nano Energy 2018, 46, 241-248.
33. Pham, H. D.; Gil-Escrig, L.; Feron, K.; Manzhos, S.; Albrecht, S.; Bolink, H. J.; Sonar, P., Boosting inverted perovskite solar cell performance by using 9,9-bis(4-diphenylaminophenyl)fluorene functionalized with triphenylamine as a dopant-free hole transporting material. Journal of Materials Chemistry A 2019, 7 (20), 12507-12517.
34. Paek, S.; Rub, M. A.; Choi, H.; Kosa, S. A.; Alamry, K. A.; Cho, J. W.; Gao, P.; Ko, J.; Asiri, A. M.; Nazeeruddin, M. K., A dual-functional asymmetric squaraine-based low band gap hole transporting material for efficient perovskite solar cells. Nanoscale 2016, 8 (12), 6335-6340.
35. Guo, J.; Meng, X.; Zhu, H.; Sun, M.; Wang, Y.; Wang, W.; Xing, M.; Zhang, F., Boosting the performance and stability of perovskite solar cells with phthalocyanine-based dopant-free hole transporting materials through core metal and peripheral groups engineering. Organic Electronics 2019, 64, 71-78.
36. Chen, J.; Xia, J.; Yu, H.-J.; Zhong, J.-X.; Wu, X.-K.; Qin, Y.-S.; Jia, C.; She, Z.; Kuang, D.-B.; Shao, G., Asymmetric 3D Hole-Transporting Materials Based on Triphenylethylene for Perovskite Solar Cells. Chemistry of Materials 2019.
37. Wang, X.; Zhang, J.; Yu, S.; Yu, W.; Fu, P.; Liu, X.; Tu, D.; Guo, X.; Li, C., Lowering Molecular Symmetry To Improve the Morphological Properties of the Hole-Transport Layer for Stable Perovskite Solar Cells. Angewandte Chemie International Edition 2018, 57 (38), 12529-12533.
38. Li, H.; Fu, K.; Boix, P. P.; Wong, L. H.; Hagfeldt, A.; Grätzel, M.; Mhaisalkar, S. G.; Grimsdale, A. C., Hole-Transporting Small Molecules Based on Thiophene Cores for High Efficiency Perovskite Solar Cells. ChemSusChem 2014, 7 (12), 3420-3425.
39. Chi, W.-J.; Li, Q.-S.; Li, Z.-S. J. T. J. o. P. C. C., Effects of molecular configuration on charge diffusion kinetics within hole-transporting materials for perovskites solar cells. The Journal of Physical Chemistry C 2015, 119 (16), 8584-8590.
40. Wu, Y.; Wang, Z.; Liang, M.; Cheng, H.; Li, M.; Liu, L.; Wang, B.; Wu, J.; Prasad Ghimire, R.; Wang, X.; Sun, Z.; Xue, S.; Qiao, Q., Influence of Nonfused Cores on the Photovoltaic Performance of Linear Triphenylamine-Based Hole-Transporting Materials for Perovskite Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (21), 17883-17895.
41. Chi, W.-J.; Li, Q.-S.; Li, Z.-S., Effect of thiophene chain lengths on the optical and hole transport properties for perovskite solar cells. Synthetic Metals 2016, 211, 107-114.
42. Rakstys, K.; Paek, S.; Gao, P.; Gratia, P.; Marszalek, T.; Grancini, G.; Cho, K. T.; Genevicius, K.; Jankauskas, V.; Pisula, W.; Nazeeruddin, M. K., Molecular engineering of face-on oriented dopant-free hole transporting material for perovskite solar cells with 19% PCE. Journal of Materials Chemistry A 2017, 5 (17), 7811-7815.
43. Xiao, L.; Chen, S.; Gao, K.; Peng, X.; Liu, F.; Cao, Y.; Wong, W.-Y.; Wong, W.-K.; Zhu, X., New Terthiophene-Conjugated Porphyrin Donors for Highly Efficient Organic Solar Cells. ACS Applied Materials & Interfaces 2016, 8 (44), 30176-30183.
44. Paek, S.; Qin, P.; Lee, Y.; Cho, K. T.; Gao, P.; Grancini, G.; Oveisi, E.; Gratia, P.; Rakstys, K.; Al-Muhtaseb, S. A.; Ludwig, C.; Ko, J.; Nazeeruddin, M. K., Dopant-Free Hole-Transporting Materials for Stable and Efficient Perovskite Solar Cells. Advanced Materials 2017, 29 (35), 1606555.
45. Rakstys, K.; Abate, A.; Dar, M. I.; Gao, P.; Jankauskas, V.; Jacopin, G.; Kamarauskas, E.; Kazim, S.; Ahmad, S.; Grätzel, M.; Nazeeruddin, M. K., Triazatruxene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells. Journal of the American Chemical Society 2015, 137 (51), 16172-16178.
46. Agarwala, P.; Kabra, D., A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering. Journal of Materials Chemistry A 2017, 5 (4), 1348-1373.
47. Thelakkat, M., Star-Shaped, Dendrimeric and Polymeric Triarylamines as Photoconductors and Hole Transport Materials for Electro-Optical Applications. Macromolecular Materials and Engineering 2002, 287 (7), 442-461.
48. Ishigaki, Y.; Kawai, H.; Katoono, R.; Fujiwara, K.; Higuchi, H.; Kikuchi, H.; Suzuki, T., Bis(diarylethenyl)-thiophenes, -bithiophenes, and -terthiophenes: a new series of electrochromic systems that exhibit a fluorescence response. Canadian Journal of Chemistry 2016, 95 (3), 243-252.
49. Nishimura, H.; Ishida, N.; Shimazaki, A.; Wakamiya, A.; Saeki, A.; Scott, L. T.; Murata, Y., Hole-Transporting Materials with a Two-Dimensionally Expanded π-System around an Azulene Core for Efficient Perovskite Solar Cells. Journal of the American Chemical Society 2015, 137 (50), 15656-15659.
50. Shirota, Y., Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. Journal of Materials Chemistry 2005, 15 (1), 75-93.
51. Malinauskas, T.; Tomkute-Luksiene, D.; Sens, R.; Daskeviciene, M.; Send, R.; Wonneberger, H.; Jankauskas, V.; Bruder, I.; Getautis, V., Enhancing Thermal Stability and Lifetime of Solid-State Dye-Sensitized Solar Cells via Molecular Engineering of the Hole-Transporting Material Spiro-OMeTAD. ACS Applied Materials & Interfaces 2015, 7 (21), 11107-11116.
52. Lim, I.; Kim, E.-K.; Patil, S. A.; Ahn, D. Y.; Lee, W.; Shrestha, N. K.; Lee, J. K.; Seok, W. K.; Cho, C.-G.; Han, S.-H., Indolocarbazole based small molecules: an efficient hole transporting material for perovskite solar cells. RSC Advances 2015, 5 (68), 55321-55327.
53. Chen, Y.; Zhao, J.; Guo, H.; Xie, L., Geometry Relaxation-Induced Large Stokes Shift in Red-Emitting Borondipyrromethenes (BODIPY) and Applications in Fluorescent Thiol Probes. The Journal of Organic Chemistry 2012, 77 (5), 2192-2206.
54. Li, H.; Fu, K.; Hagfeldt, A.; Grätzel, M.; Mhaisalkar, S. G.; Grimsdale, A. C., A Simple 3,4-Ethylenedioxythiophene Based Hole-Transporting Material for Perovskite Solar Cells. Angewandte Chemie International Edition 2014, 53 (16), 4085-4088.
55. Pham, H. D.; Do, T. T.; Kim, J.; Charbonneau, C.; Manzhos, S.; Feron, K.; Tsoi, W. C.; Durrant, J. R.; Jain, S. M.; Sonar, P., Molecular Engineering Using an Anthanthrone Dye for Low-Cost Hole Transport Materials: A Strategy for Dopant-Free, High-Efficiency, and Stable Perovskite Solar Cells. Advanced Energy Materials 2018, 8 (16), 1703007.
56. Chi, W.-J.; Li, Z.-S., The theoretical investigation on the 4-(4-phenyl-4-α-naphthylbutadieny)-triphenylamine derivatives as hole transporting materials for perovskite-type solar cells. Physical Chemistry Chemical Physics 2015, 17 (8), 5991-5998.
57. Chi, W.-J.; Sun, P.-P.; Li, Z.-S., A strategy to improve the efficiency of hole transporting materials: introduction of a highly symmetrical core. Nanoscale 2016, 8 (41), 17752-17756.
58. Ni, J.-S.; Hsieh, H.-C.; Chen, C.-A.; Wen, Y.-S.; Wu, W.-T.; Shih, Y.-C.; Lin, K.-F.; Wang, L.; Lin, J. T., Near-Infrared-Absorbing and Dopant-Free Heterocyclic Quinoid-Based Hole-Transporting Materials for Efficient Perovskite Solar Cells. ChemSusChem 2016, 9 (22), 3139-3144.
59. Zimmermann, I.; Urieta-Mora, J.; Gratia, P.; Aragó, J.; Grancini, G.; Molina-Ontoria, A.; Ortí, E.; Martín, N.; Nazeeruddin, M. K., High-Efficiency Perovskite Solar Cells Using Molecularly Engineered, Thiophene-Rich, Hole-Transporting Materials: Influence of Alkyl Chain Length on Power Conversion Efficiency. Advanced Energy Materials 2017, 7 (6), 1601674.
60. Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C., Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications. Advanced Materials 2011, 23 (20), 2367-2371.
61. Jiménez-López, J.; Cambarau, W.; Cabau, L.; Palomares, E., Charge Injection, Carriers Recombination and HOMO Energy Level Relationship in Perovskite Solar Cells. Scientific Reports 2017, 7 (1), 6101.
62. Bai, Y.; Meng, X.; Yang, S., Interface Engineering for Highly Efficient and Stable Planar p-i-n Perovskite Solar Cells. Advanced Energy Materials 2018, 8 (5), 1701883.
63. Yu, J. C.; Hong, J. A.; Jung, E. D.; Kim, D. B.; Baek, S.-M.; Lee, S.; Cho, S.; Park, S. S.; Choi, K. J.; Song, M. H., Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer. Scientific Reports 2018, 8 (1), 1070.
64. Im, J.-H.; Kim, H.-S.; Park, N.-G., Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Materials 2014, 2 (8).
65. Song, Z.; Watthage, S. C.; Phillips, A. B.; Heben, M. J., Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. Journal of Photonics for Energy 2016, 6 (2 %J Journal of Photonics for Energy), 1-23, 23.
66. Krishna, A.; Grimsdale, A. C., Hole transporting materials for mesoscopic perovskite solar cells – towards a rational design? Journal of Materials Chemistry A 2017, 5 (32), 16446-16466.
67. Arora, N.; Wetzel, C.; Dar, M. I.; Mishra, A.; Yadav, P.; Steck, C.; Zakeeruddin, S. M.; Bäuerle, P.; Grätzel, M., Donor–Acceptor-Type S,N-Heteroacene-Based Hole-Transporting Materials for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces 2017, 9 (51), 44423-44428.
68. Bi, D.; Mishra, A.; Gao, P.; Franckevičius, M.; Steck, C.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Bäuerle, P.; Grätzel, M.; Hagfeldt, A., High-Efficiency Perovskite Solar Cells Employing a S,N-Heteropentacene-based D–A Hole-Transport Material. ChemSusChem 2016, 9 (5), 433-438.
69. Morales, A. R.; Frazer, A.; Woodward, A. W.; Ahn-White, H. Y.; Fonari, A.; Tongwa, P.; Timofeeva, T.; Belfield, K. D., Design, synthesis, and structural and spectroscopic studies of push-pull two-photon absorbing chromophores with acceptor groups of varying strength. J Org Chem 2013, 78 (3), 1014-25.
70. Sonawane, Y. A.; Phadtare, S. B.; Borse, B. N.; Jagtap, A. R.; Shankarling, G. S., Synthesis of Diphenylamine-Based Novel Fluorescent Styryl Colorants by Knoevenagel Condensation Using a Conventional Method, Biocatalyst, and Deep Eutectic Solvent. Organic Letters 2010, 12 (7), 1456-1459.
71. Zhang, H.; Wu, Y.; Zhang, W.; Li, E.; Shen, C.; Jiang, H.; Tian, H.; Zhu, W.-H., Low cost and stable quinoxaline-based hole-transporting materials with a D–A–D molecular configuration for efficient perovskite solar cells. Chemical Science 2018, 9 (27), 5919-5928.
72. Xu, P.; Liu, P.; Li, Y.; Xu, B.; Kloo, L.; Sun, L.; Hua, Y., D–A–D-Typed Hole Transport Materials for Efficient Perovskite Solar Cells: Tuning Photovoltaic Properties via the Acceptor Group. ACS Applied Materials & Interfaces 2018, 10 (23), 19697-19703.
73. Pati, P. B.; Senanayak, S. P.; Narayan, K. S.; Zade, S. S., Solution Processable Benzooxadiazole and Benzothiadiazole Based D-A-D Molecules with Chalcogenophene: Field Effect Transistor Study and Structure Property Relationship. ACS Applied Materials & Interfaces 2013, 5 (23), 12460-12468.
74. Wu, G.; Zhang, Y.; Kaneko, R.; Kojima, Y.; Shen, Q.; Islam, A.; Sugawa, K.; Otsuki, J., A 2,1,3-Benzooxadiazole Moiety in a D–A–D-type Hole-Transporting Material for Boosting the Photovoltage in Perovskite Solar Cells. The Journal of Physical Chemistry C 2017, 121 (33), 17617-17624.
75. Wu, F.; Ji, Y.; Zhong, C.; Liu, Y.; Tan, L.; Zhu, L., Fluorine-substituted benzothiadiazole-based hole transport materials for highly efficient planar perovskite solar cells with a FF exceeding 80%. Chemical Communications 2017, 53 (62), 8719-8722.
指導教授 李文仁 審核日期 2019-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明