博碩士論文 106223041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.138.61.232
姓名 簡琬錡(Wan-Chi Chien)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用微米/奈米尺度類沸石咪唑骨架材料(ZIF-90)包覆大腸桿菌之相關研究
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-15以後開放)
摘要(中) 金屬有機骨架材料 (MOFs) 因具規則排列的孔洞,而成為目前最新穎的材料之一,主要特點包括高的熱及化學穩定性、尺寸大小可調控性和孔洞之選擇性。已有報導將金屬有機骨架材料塗層於酵母菌細胞表面,藉此抵禦生物裂解酶的攻擊,並使小分子營養乳糖從孔洞擴散進去而提供細胞養分,然而其表面塗層有缺陷,亦可能使抗生素氨苄青黴素等小分子擴散進去而降解細胞。本研究先合成奈米級類沸石咪唑骨架材料-8 (ZIF-8) 塗層於大腸桿菌表面,並證實抗生素確實可能經由缺陷擴散進去細胞,而使細胞裂解死亡。並進一步利用本實驗室於2015年發表之合成方法,利用微米級類沸石咪唑骨架材料-90 (ZIF-90) 封裝大腸桿菌,使其具備更完整的保護以抵禦抗生素,將材料崩解過後,大腸桿菌仍然可以回到原本的生長狀態。並分別量測大腸桿菌和兩種材料ZIF-8/-90之界達電位,藉此證明界達電位之差值確實會影響形成材料之大小,提供未來合成生物複合材料之參考。
摘要(英) Metal Organic Frameworks (MOFs), an emerging class of porous materials, have become promising materials because of their high thermal and chemical stability, tunable of their pore shape, and size selectivity. There is a report about MOF materials coating on yeast cells to prevent larger cytotoxic molecules, such as lytic enzymes while permit the transport of nutrients necessary for cell viability. However, the defects on MOF-coating may have a chance to enable antibiotic Ampicillin diffuse through and kill the cell. In this study, we demonstrate how to synthesize ZIF-8 coated E. coli and vertify antibiotics could indeed diffuse through and cause E. coli lysis. Herein, we based on our previous report of de novo approach to encapsulate Escherichia coli (E. coli) into ZIF-90 single crystals, E. coli@ZIF-90, as a completely protective structure against harsh conditions. After decomposition of ZIF-90 materials, E. coli immediately regained full functionality. Moreover, we measured the zeta potential of E. coli and ZIF-8/-90 to prove that surface electrostatic potential indeed have a influence on the size of biocomposites.
關鍵字(中) ★ 金屬有機骨架材料
★ 大腸桿菌
★ 生物複合材料
★ 類沸石咪唑骨架材料-90
★ 類沸石咪唑骨架材料-8
關鍵字(英) ★ Metal-organic Framework
★ Escherichia coli
★ Biocomposites
★ ZIF-90
★ ZIF-8
論文目次 中文摘要 I
Abstract II
圖目錄 VIII
表目錄 X
第一章 緒論 1
1-1金屬有機骨架材料 1
1-2類沸石咪唑骨架材料 4
1-3類沸石咪唑骨架材料-8/-90 5
1-4微生物 7
1-5大腸桿菌 ( Escherichia coli ) 8
1-6質體 ( Plasmid ) 11
1-7研究動機與目的 13
第二章 實驗部分 14
2-1實驗藥品與材料 14
2-2實驗儀器與原理 16
2-2-1 粉末X光繞射儀 (Powder X-Ray Diffraction, PXRD) 17
2-2-2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 18
2-2-3 熱重分析儀 (Thermogravimetric Analyzer, TGA) 19
2-2-4 螢光顯微鏡 (Fluorescence Microscopy) 20
2-2-5 共軛焦雷射掃描顯微鏡 (Confocal Microscopy) 21
2-2-6 聚合酶鏈鎖反應 (Polymerase Chain Reaction, PCR) 22
2-2-7 攜帶型分光光度計 (Ultrospec 10 Cell Density Meter) 24
2-2-8 瓊脂糖凝膠電泳 (Agarose Gel Electrophoresis) 24
2-2-9 界面電位分析儀 (Zeta Potential Analyzer) 25
2-3實驗步驟 26
2-3-1 培養大腸桿菌之相關實驗步驟 26
2-3-2 微米級類沸石咪唑骨架材料-90封裝大腸桿菌 (E. coli@ZIF-90) 之實驗相關步驟 30
2-3-3 奈米級類沸石咪唑骨架材料-8塗層於大腸桿菌之相關實驗步驟 32
2-3-4 奈米級類沸石咪唑骨架材料-90塗層於大腸桿菌之實驗步驟 33
第三章 結果與討論 34
3-1 大腸桿菌之相關鑑定 34
3-1-1 於類沸石咪唑骨架材料-8/-90之活性探討 34
3-1-2 於鹼性環境之活性探討 35
3-1-3 於2-甲基咪唑 ( 2-MI )環境之活性探討 36
3-1-4 於不同培養液之生長狀態探討 37
3-1-5 於不同培養液中抗生素殺菌效果探討 38
3-1-6 於鹽酸與乙二胺四乙酸環境之活性探討 39
3-2微米級類沸石咪唑骨架材料-90封裝大腸桿菌 (E. coli@ZIF-90) 之相關鑑定 41
3-2-1 粉末X光繞射儀鑑定結果 41
3-2-2 掃描式電子顯微鏡鑑定結果 42
3-2-3 熱重分析儀鑑定結果 43
3-2-4 螢光顯微鏡與共軛焦顯微鏡鑑定結果 44
3-2-5 E. coli@ZIF-90於抗生素環境之活性探討 46
3-3奈米級多晶類沸石咪唑骨架材料塗層於大腸桿菌表面之相關鑑定 47
3-3-1 粉末X光繞射儀鑑定結果 47
3-3-2 掃描式電子顯微鏡鑑定結果 48
3-3-3 於抗生素環境之活性探討 49
3-3-4 ZIF-8/-90與大腸桿菌之界達電位探討 50
第四章 結論 51
第五章 參考文獻 52
參考文獻 1. Batten SR, et al. Coordination polymers, metal–organic frameworks and the need for terminology guidelines. CrystEngComm 14, 3001-3004 (2012).

2. Moghadam PZ, et al. Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for Past, Present, and Future. Chemistry of Materials 29, 2618-2625 (2017).

3. Farha OK, et al. Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? Journal of the American Chemical Society 134, 15016-15021 (2012).

4. Henke S. Metal-Organic Frameworks with Additional Flexible Substituents –
Modulating Responsiveness, Gas Sorption Selectivity & Network Topologies. ResearchGate, (2011).

5. Férey G. Hybrid porous solids: past, present, future. Chemical Society Reviews 37, 191-214 (2008).

6. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The Chemistry and Applications of Metal-Organic Frameworks. Science 341, 1230444 (2013).

7. Stock N, Biswas S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 112, 933-969 (2012).

8. Klinowski J, Almeida Paz FA, Silva P, Rocha J. Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions 40, 321-330 (2011).

9. Khan NA, Jhung SH. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coordination Chemistry Reviews 285, 11-23 (2015).

10. Al-Kutubi H, Gascon J, Sudhölter EJR, Rassaei L. Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities. ChemElectroChem 2, 462-474 (2015).

11. Do J-L, Friščić T. Mechanochemistry: A Force of Synthesis. ACS Central Science 3, 13-19 (2017).

12. Dey C, Kundu T, Biswal BP, Mallick A, Banerjee R. Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallographica Section B 70, 3-10 (2014).

13. Seetharaj R, Vandana PV, Arya P, Mathew S. Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian Journal of Chemistry 12, 295-315 (2019).

14. Bennett TD, Cheetham AK, Fuchs AH, Coudert F-X. Interplay between defects, disorder and flexibility in metal-organic frameworks. Nature Chemistry 9, 11 (2016).

15. Sholl DS, Lively RP. Defects in Metal–Organic Frameworks: Challenge or Opportunity? The Journal of Physical Chemistry Letters 6, 3437-3444 (2015).

16. Hajek J, Bueken B, Waroquier M, De Vos D, Van Speybroeck V. The Remarkable Amphoteric Nature of Defective UiO-66 in Catalytic Reactions. ChemCatChem 9, 2203-2210 (2017).

17. Banerjee R, et al. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO<sub>2</sub> Capture. Science 319, 939 (2008).

18. Suh MP, Park HJ, Prasad TK, Lim D-W. Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews 112, 782-835 (2012).

19. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 112, 1105-1125 (2012).

20. Yoon M, Srirambalaji R, Kim K. Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews 112, 1196-1231 (2012).

21. Li S-L, Xu Q. Metal–organic frameworks as platforms for clean energy. Energy & Environmental Science 6, 1656-1683 (2013).

22. Horcajada P, et al. Metal–Organic Frameworks in Biomedicine. Chemical Reviews 112, 1232-1268 (2012).

23. Yen C-I, et al. Cytotoxicity of Postmodified Zeolitic Imidazolate Framework-90 (ZIF-90) Nanocrystals: Correlation between Functionality and Toxicity. Chemistry – A European Journal 22, 2925-2929 (2016).

24. Bétard A, Fischer RA. Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chemical Reviews 112, 1055-1083 (2012).

25. Miller SE, Teplensky MH, Moghadam PZ, Fairen-Jimenez D. Metal-organic frameworks as biosensors for luminescence-based detection and imaging. Interface focus 6, 20160027-20160027 (2016).

26. McDonald TM, et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303 (2015).

27. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research 43, 58-67 (2010).

28. Huang X-C, Lin Y-Y, Zhang J-P, Chen X-M. Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angewandte Chemie International Edition 45, 1557-1559 (2006).

29. Park KS, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences 103, 10186 (2006).

30. Pérez-Pellitero J, et al. Adsorption of CO2, CH4, and N2 on Zeolitic Imidazolate Frameworks: Experiments and Simulations. Chemistry – A European Journal 16, 1560-1571 (2010).

31. Pan Y, Lai Z. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chemical Communications 47, 10275-10277 (2011).

32. Wu H, Zhou W, Yildirim T. Hydrogen Storage in a Prototypical Zeolitic Imidazolate Framework-8. Journal of the American Chemical Society 129, 5314-5315 (2007).

33. Kuo C-H, et al. Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. Journal of the American Chemical Society 134, 14345-14348 (2012).

34. Chen E-X, Yang H, Zhang J. Zeolitic Imidazolate Framework as Formaldehyde Gas Sensor. Inorganic Chemistry 53, 5411-5413 (2014).

35. Zhuang J, Kuo C-H, Chou L-Y, Liu D-Y, Weerapana E, Tsung C-K. Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano 8, 2812-2819 (2014).

36. Morris W, Doonan CJ, Furukawa H, Banerjee R, Yaghi OM. Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society 130, 12626-12627 (2008).

37. Bae T-H, Lee JS, Qiu W, Koros WJ, Jones CW, Nair S. A High-Performance Gas-Separation Membrane Containing Submicrometer-Sized Metal–Organic Framework Crystals. Angewandte Chemie International Edition 49, 9863-9866 (2010).

38. Huang A, Dou W, Caro J. Steam-Stable Zeolitic Imidazolate Framework ZIF-90 Membrane with Hydrogen Selectivity through Covalent Functionalization. Journal of the American Chemical Society 132, 15562-15564 (2010).

39. Zhang F-M, et al. Postsynthetic Modification of ZIF-90 for Potential Targeted Codelivery of Two Anticancer Drugs. ACS Applied Materials & Interfaces 9, 27332-27337 (2017).

40. Jones CG, et al. Versatile Synthesis and Fluorescent Labeling of ZIF-90 Nanoparticles for Biomedical Applications. ACS Applied Materials & Interfaces 8, 7623-7630 (2016).

41. Gest H. The Remarkable Vision of Robert Hooke (1635-1703): First Observer of the Microbial World. Perspectives in Biology and Medicine 48, 266-272 (2005).

42. Porter JR. Antony van Leeuwenhoek: tercentenary of his discovery of bacteria. Bacteriol Rev 40, 260-269 (1976).

43. Cruickshank R. Sir Alexander Fleming, F.R.S. Nature 175, 663-663 (1955).

44. Cummings B. Pearson Education. (2004).

45. https://www.lifescience-market.com/plasmid-c-94/pet28aegfp-p-95194.html.

46. Yang SH, Lee K-B, Kong B, Kim J-H, Kim H-S, Choi IS. Biomimetic Encapsulation of Individual Cells with Silica. Angewandte Chemie International Edition 48, 9160-9163 (2009).

47. Park JH, et al. A Cytoprotective and Degradable Metal–Polyphenol Nanoshell for Single-Cell Encapsulation. Angewandte Chemie International Edition 53, 12420-12425 (2014).

48. Ko EH, et al. Bioinspired, cytocompatible mineralization of silica-titania composites: thermoprotective nanoshell formation for individual chlorella cells. Angew Chem Int Ed Engl 52, 12279-12282 (2013).

49. Liang K, Richardson JJ, Cui J, Caruso F, Doonan CJ, Falcaro P. Metal–Organic Framework Coatings as Cytoprotective Exoskeletons for Living Cells. Advanced Materials 28, 7910-7914 (2016).

50. Riccò R, et al. Metal–Organic Frameworks for Cell and Virus Biology: A Perspective. ACS Nano 12, 13-23 (2018).

51. https://www.sciencetopia.net/physics/braggs-law.

52. https://images.app.goo.gl/2kND8ERzWd1BSCot9.

53. https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-analysis-learning-center/molecular-probes-school-of-fluorescence/fundamentals-of-fluorescence-microscopy/epifluorescence-microscope-basics.html.

54. http://abrc.sinica.edu.tw/icm/app_out/main/theorem.php.

55. https://www.bosterbio.com/protocol-and-troubleshooting/molecular-biology-principle-pcr.

56. https://upload.wikimedia.org/wikipedia/commons/0/05/Diagram_of_zeta_potential_and_slipping_planeV2.svg.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2020-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明