博碩士論文 106223047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:1 、訪客IP:18.119.107.96
姓名 梁鈞郁(Chun-Yu Liang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 銠(111)對硝酸的還原及鉑銠合金對甲醇催化之研究
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ Synthesis and Characterization of Cyclopentadithiophene (CDT) based Organic Photovoltaic and Pyrazine Contained Hole Transporting Small Molecules★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構
★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積★ 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面
★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程
★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究
★ 半導體碘化鉛薄膜在單結晶銠電極上的研究★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構
★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究
★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 接續先前實驗室製備的Pt/Pd(111)對甲醇氧化有提升效果,改以銠當載體探討 : (1)故以含氧性高的銠金屬與鉑製備成合金,研究對甲醇氧化的活性;(2)作為常用於還原反應的催化材料之一,及近期有許多以銠對硝酸鹽催化的文獻,故研究特定晶面的銠對硝酸鹽的活性。
本研究以無電鍍和電鍍兩種簡易方法製備鉑銠合金,由掃描式穿隧電子顯微鏡(STM)和X射線光電子能譜儀(XPS)觀察兩者表面的結構型態,發現兩種方式的鉑都以奈米尺度沉積於銠(111)上,但XPS的Pt 4f訊號卻有所不同,並藉以循環伏安法(CV)探討催化甲醇的活性,實驗結果顯示無電鍍的Pt NPs/Rh(111)相比Pt(111)的正掃氧化電位提前280 mV,且負掃的氧化峰能提前在0.1 V(vs. Ag/AgCl)出現;再經由氧化CO實驗,也觀察到Pt NPs/Rh(111)的CO氧化電位相比Pt(111)能提前35~115 mV,推論銠金屬能在低電位貢獻OH,使CO毒化能力降低,所以提升甲醇氧化活性是藉由鉑銠的協同作用 — Pt-CO + Rh-OH →Pt + Rh + CO2 + H+ + e−,還會以XPS、粗糙度等方向分析影響甲醇氧化電位與電流大小的因素。
從STM和紅外反射吸收光譜儀(IRRAS)探討硝酸吸附於銠(111)的結構與反應過程;發現晶面的不同導致硝酸還原活性也有所不同,分別對(111)和(100)晶面的硝酸還原CV做Tafel slope,得出114和180 mV dec-1 ,認為都以硝酸根吸附接著還原成亞硝酸為速率決定步驟(RDS),因此活性表現較差的(100)晶面,原因可能是幾何結構的影響(Geometric effect) — 三角平面結構的NO3-不易吸附於簡單四方的(100)晶面;還探討不同pH值和陰離子對硝酸鹽活性是否有改變。
摘要(英) The Pt/Pd(111) prepared in the previous laboratory has the effect of improving the oxidation of methanol. It is changed to the carrier of the rhodium : (1) The alloy prepared from a high oxygen-containing rhodium and platinum to Study the activity toward methanol oxidation; (2) As one of the catalytic materials commonly was used in the reduction reaction, and there are many literature on the catalysis of nitrate by rhodium recently; therefore, the nitrate reductive activity on specific crystal facets is studied.
In this study, platinum-rhodium alloy was prepared by two methods: electroless plating and electroplating. The structure of the surface was observed by scanning tunneling electron microscopy (STM) and X-ray photoelectron spectroscopy (XPS). It was found that both platinum were deposited on the Rhodium (111) with nanometer scale, but the XPS Pt 4f signal is different, and the activity toward MOR was investigated by cyclic voltammetry (CV). The experimental results show that oxidative potential of Pt NPs/Rh(111) from electroless plating moved up 280 mV than that of Pt(111), and the oxidation peak of the backward sweep can appear in advance at 0.1 V (vs. Ag/AgCl). Through the oxidation of CO experiment, it was also observed that the CO oxidation potential of Pt NPs/Rh(111) was 35~115 mV ahead of Pt(111), it is inferred that rhodium can contribute OH group at low potential, which reduces CO poisoning, so the methanol oxidation activity is enhanced by the synergistic effect of platinum and rhodium—Pt-CO + Rh-OH →Pt + Rh + CO2 + H+ + e−. XPS and roughness also analyzed factors affecting the oxidation potential and current of methanol.
The structure and reaction process of nitric acid adsorption on rhodium (111) were investigated from STM and infrared reflectance absorption spectrometer(IRRAS). It is found that the difference in crystal facet results in different nitrate reduction activities, Tafel slope was performed on the nitrate reduction CV of the (111) and (100) facets, respectively, and 114 and 180 mV dec-1 were obtained, it is considered that the nitrate adsorbed and followed by reduction to nitrite as a rate determining step (RDS), therefore, the (100) crystal plane with poor activity may be due to the geometric effect—the triangular plane structure of NO3- is not easy to adsorb to the simple tetragonal (100) plane. It is also explored whether different pH values and anions have a change in nitrate activity.
關鍵字(中) ★ 電化學
★ 銠單晶
★ 硝酸還原
★ 鉑奈米沉積
★ 甲醇氧化
關鍵字(英)
論文目次 摘要 i
Abstract ii
謝誌 iv
第一章、 緒論 1
1-1 燃料電池 1
1-1-1 基本原理 1
1-1-2 鉑金屬的應用 1
1-1-3 甲醇在鉑電極上的反應機制 2
1-2 硝酸鹽的特性 2
1-2-1 特性與危害 2
1-2-2 相關法規規範[7,8] 3
1-2-3 電化學處理方法 3
1-3 塔弗方程式(Tafel Equation)[12-14] 4
1-4 研究動機 5
第二章、 實驗部分 8
2-1 化學藥品 8
2-2 實驗氣體 8
2-3 金屬線材 9
2-4 儀器設備 9
2-5 實驗步驟 11
第三章、 對鉑奈米粒子沉積於銠(111)電化學活性之探討 13
3-1 對Pt NPs/Rh(111)和Rh NPs/Pt(111)的電化學分析 13
3-1-1 Pt NPs/Rh(111) 13
3-1-2 Rh NPs/Pt(111) 29
3-1-3 UPD Cu的分析 34
3-2 一氧化碳氧化反應之活性 46
3-2-1 Rh(111)和Pt(111)之CO氧化 46
3-2-1 Pt NPs/Rh(111)之CO氧化 46
3-3 甲醇氧化反應之活性 53
3-3-1 Rh(111)電極之甲醇氧化 53
3-3-2 Pt(111)電極之甲醇氧化 53
3-3-3 Pt NPs/Rh(111)電極之甲醇氧化 57
第四章、 銠電極對硝酸還原之活性探討 69
4-1 銠(111)對硝酸還原之探討 69
4-2 銠(100)對硝酸還原之探討 92
4-3 pH值與陰離子效應 97
4-4 Pt NPs/Rh(111)對硝酸還原之活性 104
第五章、 結論 109
第六章、 參考文獻 111
參考文獻 1. Fuel cell basics, technology types. MAY 2012.
取自http://www.fuelcelltoday.com/media/1637138/fc_basics_technology_types.pdf
2. Gasteiger, H. A.; Markovic, N. M.; Ross Jr, P. N., H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. The Journal of Physical Chemistry 1995, 99 (20), 8290-8301.
3. Gasteiger, H. A.; Markovic, N. M.; Ross Jr, P. N., Electrooxidation of CO and H2/CO mixtures on a well-characterized Pt3Sn electrode surface. The Journal of Physical Chemistry 1995, 99 (22), 8945-8949.
4. Grgur, B.; Markovic, N.; Ross, P., The Electro‐oxidation of H 2 and H 2/CO Mixtures on Carbon‐Supported Pt x Mo y Alloy Catalysts. Journal of the Electrochemical Society 1999, 146 (5), 1613-1619.
5. Zhao, Y.; Liu, J.; Zhao, Y.; Wang, F.; Song, Y., Pt–Co secondary solid solution nanocrystals supported on carbon as next-generation catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A 2015, 3 (40), 20086-20091.
6. Jarvi, T.; Sriramulu, S.; Stuve, E., Potential dependence of the yield of carbon dioxide from electrocatalytic oxidation of methanol on platinum (100). The Journal of Physical Chemistry B 1997, 101 (19), 3649-3652.
7. Agency for Toxic Substances and Disease Registry, Toxic Substances Portal - Nitrate and Nitrite.
取自https://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=1186&tid=258
8. 彭宗仁: 水體中硝酸鹽污染之危害,2009年10月。
取自http://59.120.88.200:8080/Mobile/Article.aspx?lang=1&a=eB4LeTfYuzo%3D
9. Sun, C.; Li, F.; An, H.; Li, Z.; Bond, A. M.; Zhang, J., Facile electrochemical co-deposition of metal (Cu, Pd, Pt, Rh) nanoparticles on reduced graphene oxide for electrocatalytic reduction of nitrate/nitrite. Electrochimica Acta 2018, 269, 733-741.
10. Dima, G.; De Vooys, A.; Koper, M., Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions. Journal of Electroanalytical Chemistry 2003, 554, 15-23.
11. Brylev, O.; Sarrazin, M.; Roué, L.; Bélanger, D., Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes. Electrochimica Acta 2007, 52 (21), 6237-6247.
12. 劉家瑞,合成過渡金屬硫化物與碳材的複合材料及其在電化學產氫的應用,東海大學,碩士論文,民國102年。
13. 浅谈塔菲尔动力学(Tafel Kinetics),2019-02。
取自https://zhuanlan.zhihu.com/p/56428744
14. Doyle, R. L.; Lyons, M. E., The oxygen evolution reaction: mechanistic concepts and catalyst design. In Photoelectrochemical solar fuel production, Springer: 2016; pp 41-104.
15. Tamura, H.; Sasahara, A.; Tanaka, K.-i., Cyclic voltammogram of Rh (100), Pt-deposited Rh (100) and chemically reconstructed PtRh (100) surfaces. Journal of Electroanalytical Chemistry 1995, 381 (1-2), 95-98.
16. 王盼盼、张凯庆和邹镇耀,直接甲醇燃料电池阳极催化剂研究现状,2018年03月。
取自https://www.auto-testing.net/news/show-95849.html
17. Liu, S. X.; Liao, L. W.; Tao, Q.; Chen, Y. X.; Ye, S., The kinetics of CO pathway in methanol oxidation at Pt electrodes, a quantitative study by ATR-FTIR spectroscopy. Physical Chemistry Chemical Physics 2011, 13 (20), 9725-9735.
18. Li, S., Monitoring corrosion using vibrational spectroscopic techniques. In Intelligent Coatings for Corrosion Control, Elsevier: 2015; pp 673-701.
19. Wan, L.-J.; Yau, S.-L.; Itaya, K., Atomic structure of adsorbed sulfate on Rh (111) in sulfuric acid solution. The Journal of Physical Chemistry 1995, 99 (23), 9507-9513.
20. Zoval, J.; Lee, J.; Gorer, S.; Penner, R., Electrochemical preparation of platinum nanocrystallites with size selectivity on basal plane oriented graphite surfaces. The Journal of Physical Chemistry B 1998, 102 (7), 1166-1175.
21. Kita, H.; Gao, Y.; Ye, S.; Shimazu, K., Different routes in the forward and backward occurrences of the hydrogen electrode reaction on Pt single crystal electrodes in acid solution. Bulletin of the Chemical Society of Japan 1993, 66 (10), 2877-2882.
22. Zolfaghari, A.; Jerkiewicz, G., Temperature-dependent research on Pt (111) and Pt (100) electrodes in aqueous H2SO4. Journal of Electroanalytical Chemistry 1999, 467 (1-2), 177-185.
23. Shao, M.; Odell, J. H.; Choi, S.-I.; Xia, Y., Electrochemical surface area measurements of platinum-and palladium-based nanoparticles. Electrochemistry Communications 2013, 31, 46-48.
24. Wu, Z.-L.; Zang, Z.-H.; Yau, S.-L., Electrodeposition of copper at well-defined Pt (111) and Rh (111) electrodes in sulfuric acid solutions: Studying with in situ scanning tunneling microscopy. Langmuir 2000, 16 (7), 3522-3528.
25. Shingaya, Y.; Matsumoto, H.; Ogasawara, H.; Ito, M., In situ and ex situ IRAS, LEED and EC-STM studies of underpotentially deposited copper on a Pt (111) electrode in sulfuric acid solution: coadsorption of sulfate ion with copper. Surface science 1995, 335, 23-31.
26. Gasteiger, H. A.; Marković, N.; Ross, P. N.; Cairns, E. J., Temperature‐Dependent Methanol Electro‐Oxidation on Well‐Characterized Pt‐Ru Alloys. Journal of the Electrochemical Society 1994, 141 (7), 1795-1803.
27. Friedrich, K.; Geyzers, K.-P.; Linke, U.; Stimming, U.; Stumper, J., CO adsorption and oxidation on a Pt (111) electrode modified by ruthenium deposition: an IR spectroscopic study. Journal of Electroanalytical Chemistry 1996, 402 (1-2), 123-128.
28. Campbell, C.; Ertl, G.; Kuipers, H.; Segner, J., A molecular beam study of the catalytic oxidation of CO on a Pt (111) surface. The Journal of Chemical Physics 1980, 73 (11), 5862-5873.
29. Hopstaken, M.; Niemantsverdriet, J., Structure sensitivity in the CO oxidation on rhodium: Effect of adsorbate coverages on oxidation kinetics on Rh (100) and Rh (111). The Journal of Chemical Physics 2000, 113 (13), 5457-5465.
30. Yau, S. L.; Gao, X.; Chang, S. C.; Schardt, B. C.; Weaver, M. J., Atomic-resolution scanning tunneling microscopy and infrared spectroscopy as combined in situ probes of electrochemical adlayer structure: carbon monoxide on rhodium (111). Journal of the American Chemical Society 1991, 113 (16), 6049-6056.
31. Chung, D. Y.; Lee, K.-J.; Sung, Y.-E., Methanol electro-oxidation on the Pt surface: revisiting the cyclic voltammetry interpretation. The Journal of Physical Chemistry C 2016, 120 (17), 9028-9035.
32. Hamnett, A., Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis today 1997, 38 (4), 445-457.
33. Lee, Y.-W.; Park, K.-W., Pt–Rh alloy nanodendrites for improved electrocatalytic activity and stability in methanol electrooxidation reaction. Catalysis Communications 2014, 55, 24-28.
34. Yahikozawa, K.; Fujii, Y.; Matsuda, Y.; Nishimura, K.; Takasu, Y., Electrocatalytic properties of ultrafine platinum particles for oxidation of methanol and formic acid in aqueous solutions. Electrochimica acta 1991, 36 (5-6), 973-978.
35. Kabbabi, A.; Gloaguen, F.; Andolfatto, F.; Durand, R., Particle size effect for oxygen reduction and methanol oxidation on Pt/C inside a proton exchange membrane. Journal of Electroanalytical Chemistry 1994, 373 (1-2), 251-254.
36. Frelink, T.; Visscher, W.; Van Veen, J., Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol. Journal of Electroanalytical Chemistry 1995, 382 (1-2), 65-72.
37. Cohen, J. L.; Volpe, D. J.; Abruna, H. D., Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Physical Chemistry Chemical Physics 2007, 9 (1), 49-77.
38. Dingreville, R.; Qu, J.; Cherkaoui, M., Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. Journal of the Mechanics and Physics of Solids 2005, 53 (8), 1827-1854.
39. Kawahara, S.; Mitsushima, S.; Ota, K.; Kamiya, N., Deterioration of Pt catalyst under potential cycling. ECS Transactions 2006, 3 (1), 625-631.
40. Darling, R. M.; Meyers, J. P., Mathematical model of platinum movement in PEM fuel cells. Journal of the Electrochemical Society 2005, 152 (1), A242-A247.
41. Tang, L.; Han, B.; Persson, K.; Friesen, C.; He, T.; Sieradzki, K.; Ceder, G., Electrochemical stability of nanometer-scale Pt particles in acidic environments. Journal of the American Chemical Society 2009, 132 (2), 596-600.
42. Herrero, E.; Franaszczuk, K.; Wieckowski, A., Electrochemistry of methanol at low index crystal planes of platinum: an integrated voltammetric and chronoamperometric study. The Journal of Physical Chemistry 1994, 98 (19), 5074-5083.
43. Suopanki, A.; Polvinen, R.; Valden, M.; Härkönen, M., Rh oxide reducibility and catalytic activity of model Pt–Rh catalysts. Catalysis today 2005, 100 (3-4), 327-330.
44. Li, Y.; Gao, W.; Ci, L.; Wang, C.; Ajayan, P. M., Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon 2010, 48 (4), 1124-1130.
45. Liu, Z.; Ling, X. Y.; Su, X.; Lee, J. Y., Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. The Journal of Physical Chemistry B 2004, 108 (24), 8234-8240.
46. Da Cunha, M.; De Souza, J.; Nart, F., Reaction pathways for reduction of nitrate ions on platinum, rhodium, and platinum− rhodium alloy electrodes. Langmuir 2000, 16 (2), 771-777.
47. Duca, M.; Kightley, J.; Garbarino, S. b.; Guay, D., The art of decoration: Rhodium-modified platinum films with preferential (100) orientation as electrocatalysts for nitrate reduction and dimethyl ether oxidation. The Journal of Physical Chemistry C 2017, 121 (28), 15233-15247.
48. Duca, M.; Sacré, N.; Wang, A.; Garbarino, S.; Guay, D., Enhanced electrocatalytic nitrate reduction by preferentially-oriented (100) PtRh and PtIr alloys: the hidden treasures of the ‘miscibility gap’. Applied Catalysis B: Environmental 2018, 221, 86-96.
49. De Vooys, A.; Koper, M.; Van Santen, R.; Van Veen, J., Mechanistic study of the nitric oxide reduction on a polycrystalline platinum electrode. Electrochimica acta 2001, 46 (6), 923-930.
50. Rodes, A.; Gomez, R.; Orts, J.; Feliu, J.; Perez, J.; Aldaz, A., In situ FTIR spectroscopy characterization of the NO adlayers formed at platinum single crystal electrodes in contact with acidic solutions of nitrite. Langmuir 1995, 11 (9), 3549-3553.
51. Gomez, R.; Rodes, A.; Pérez, J.; Feliu, J., FTIRS and electrochemical characterization of the NO adlayer generated by immersion of a Rh (111) electrode in an acidic solution of nitrite. Journal of Electroanalytical Chemistry 1995, 393 (1-2), 123-129.
52. Kao, C.-T.; Blackman, G.; Van Hove, M.; Somorjai, G. A.; Chan, C.-M., The surface structure and chemical reactivity of Rh (111)-(2× 2)-3NO by HREELS and dynamical LEED analysis. Surface science 1989, 224 (1-3), 77-96.
53. Yau, S.-L.; Kim, Y.-G.; Itaya, K., In situ scanning tunneling microscopy of benzene adsorbed on Rh (111) and Pt (111) in HF solution. Journal of the American Chemical Society 1996, 118 (33), 7795-7803.
54. Da Cunha, M.; Weber, M.; Nart, F. C., On the adsorption and reduction of NO3− ions at Au and Pt electrodes studied by in situ FTIR spectroscopy. Journal of Electroanalytical Chemistry 1996, 414 (2), 163-170.
55. Figueiredo, M. C.; Souza-Garcia, J.; Climent, V.; Feliu, J. M., Nitrate reduction on Pt (1 1 1) surfaces modified by Bi adatoms. Electrochemistry Communications 2009, 11 (9), 1760-1763.
56. Pérez-Gallent, E.; Figueiredo, M. C.; Katsounaros, I.; Koper, M. T., Electrocatalytic reduction of Nitrate on Copper single crystals in acidic and alkaline solutions. Electrochimica Acta 2017, 227, 77-84.
57. Rodes, A.; Gomez, R.; Perez, J.; Feliu, J.; Aldaz, A., On the voltammetric and spectroscopic characterization of nitric oxide adlayers formed from nitrous acid on Pt (h, k, l) and Rh (h, k, l) electrodes. Electrochimica acta 1996, 41 (5), 729-745.
58. Rima, F. R.; Nakata, K.; Shimazu, K.; Osawa, M., Surface-enhanced infrared absorption spectroscopic studies of adsorbed nitrate, nitric Oxide, and related compounds. 3. formation and reduction of adsorbed nitrite at a platinum electrode. The Journal of Physical Chemistry C 2010, 114 (13), 6011-6018.
59. Rhee, C.; Wasberg, M.; Zelenay, P.; Wieckowski, A., Reduction of perchlorate on rhodium and its specificity to surface crystallographic orientation. Catalysis letters 1991, 10 (3-4), 149-164.
60. Rhee, C.; Wasberg, M.; Horanyi, G.; Wieckowski, A., Strong anion/surface interactions: perchlorate reduction on Rh (100) electrode studied by voltammetry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1990, 291 (1-2), 281-287.
61. Wan, L.-J.; Yau, S.-L.; Itaya, K., Structure of thiocyanate adlayers on Rh (111): an in situ STM study. Journal of Solid State Electrochemistry 1997, 1 (1), 45-52.
62. Ye, S.; Ishibashi, C.; Uosaki, K., Anisotropic Dissolution of an Au (111) Electrode in Perchloric Acid Solution Containing Chloride Anion Investigated by in Situ STM The Important Role of Adsorbed Chloride Anion. Langmuir 1999, 15 (3), 807-812.
63. 廖偉成, 利用掃描式電子顯微鏡以及表面增強紅外研究白金沉積於鈀(111)對於催化甲醇、甲酸、甲醛的效果, 國立中央大學,碩士論文, 民國105年。
64. De Vooys, A.; Koper, M.; Van Santen, R.; Van Veen, J., Mechanistic study on the electrocatalytic reduction of nitric oxide on transition-metal electrodes. Journal of Catalysis 2001, 202 (2), 387-394.
65. Duca, M.; Van der Klugt, B.; Hasnat, M.; Machida, M.; Koper, M., Electrocatalytic reduction of nitrite on a polycrystalline rhodium electrode. Journal of Catalysis 2010, 275 (1), 61-69.
66. Brown, W. A.; King, D. A., NO chemisorption and reactions on metal surfaces: a new perspective. ACS Publications: 2000.
指導教授 姚學麟(Shueh-Lin Yau) 審核日期 2019-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明