博碩士論文 106223051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:75.101.220.230
姓名 陳伯元(Po-Yuan-Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 官能基化矽負極材料高能鋰離子電池研究
(Conducting Polymer Binding of Surface Functionalized Silica as a Durable High Energy Lithium Battery Anode)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-1以後開放)
摘要(中) 本研究使用導電高分子poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS)作為黏著劑,包覆
4-hydroxybenzenesulfonic acid (4HBS)官能基化的矽奈米顆粒作為鋰電池負極材料。經過4HBS官能基化的矽奈米顆粒,與導電高分子藉由電荷吸引力產生完整的包覆。這樣的結構不僅不破壞導電高分子的共軛性(有利於電子導電),還能有效提升黏著劑的包覆完整性。所產生的矽(核)-導電高分子(殼)的奈米複合材料作為電池的負極,能夠避免矽材料與電解液直接接觸,充放電數圈後形成穩定負極結構,介面阻抗逐漸減小、在充放電500圈後具有穩定的變速率充放電。由以上這些功能能夠有效改善矽基負極半電池的電性表現,減少材料劣化現象和保持矽負極電池的循環壽命。
本研究中發現Si○f25wt%4HBS擁有最好的電性表現,於第105圈時達到最高的電容量2067.7mAh/g,在第500圈時電量下降到1715.1 mAh/g,經過化成後的最高電容量到500圈後的電量保持率為87.0%。在長圈數500圈充放電過程中展現了優異的電容保持率,本研究提供一種新穎的做法來提升電池電化學表現的穩定性,不僅做法簡單價格便宜,此一材料設計概念未來可廣泛應用於鋰離子電池,將可克服以往矽負極劣化的難題。
關鍵字:矽、負極材料、導電高分子、官能基化
摘要(英) Conducting polymer poly(3,4-ethylenedioxythiophene) and polystyrene sulfonate polymer mixture (PEDOT:PSS) is used as the binder for lithium battery anode electrode. Complete encapsulation of the binder with Silica nano particle; surface functionalized with 4-hydroxybenzenesulfonic acid (HBS) constitutes a novel high energy anode for advanced lithium battery. The electrostatic interaction between the sulfonic group of HBS and the base electron donating group in PEDOT stabilizes both the silicon nano particles and the conjugate polymer which provide not only fluent electron conductivity but also established flexible protection for Silica nano particle from direct contact with solvent electrolyte. The electron conducting encapsulation eases the concern over the excessive growth of SEI and prevented the pulverization of the active ingredient from repetitive expansion and contraction during charge discharge cycles.
For 25% 4HBS functionalized sample (Si f 25wt% 4HBS), a high capacitance in the order of 2000 mAh/g-Si is detected which gradually rose to the highest value of 2067.7mah/g at 105 cycles, and slowly decreased to 1715.1 mAh/g-Si after 500 cycles. The capacity retention rate at 87% is impressive; when compare with all previous anode formula based on conducting polymer encapsulation. Excellent and stable capacity above 1700 mAh/g-Si can be expected when applied to high energy density lithium battery. This study unveils a novel and convenient method to circumvent the stability and pulverization issues associated with the use of silicon nano particle as the anode for next generation lithium battery.

keyword : Silicon , Lithium ion batteries , Anode, Conductive binder , Functionalizatio
關鍵字(中) ★ 矽
★ 負極材料
★ 導電高分子
★ 官能基化
關鍵字(英)
論文目次 摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1.前言 1
1-2.鋰離子電池工作原理 3
1-3.研究動機 6
1-4.研究設計 7
第二章 文獻檢索 9
2-1.合金型矽(Si)負極材料特性 9
解決方法 10
2-2.黏著劑介紹 11
2-2-1.提升黏著劑的彈性 13
2-2-2.導電黏著劑取代傳統黏著劑 16
2-2-3.利用球磨法使導電黏著劑成為膠狀 21
2-2-4.透過n-Type Doping改善導電黏著劑和活物間的介面電阻 24
2-3.固態電解質介面(SEI) 27
2-3-1.導電高分子修飾SEI層 28
2-3-2.導電高分子官能基化矽奈米顆粒包覆高分子修飾SEI層 31
2-3-3.有彈性的石墨烯殼層包覆矽微米顆粒 35
第三章 實驗介紹 38
3-1.實驗藥品、實驗設備儀器以及器材 38
3-1-1.實驗藥品 38
3-1-2.實驗設備 40
3-1-3.實驗器材 42
3-1-4.鈕扣型電池組裝與測試 43
3-2.實驗步驟 44
3-2-1. Si f Xwt% 4HBS的製備 44
3-2-2.負極半電池極片製備 46
3-3.性能測試 46
第四章 結果與討論 48
4-1.Si官能基化情形分析 48
4-1-1.材料官能基化解析-FTIR 49
4-1-2.材料表面構型與截面構型分析-TEM 50
4-1-3.官能基化生成在矽奈米顆粒表面的含量測試-1H NMR 51
4-2.官能基化提升導電高分子的包覆性 53
4-2-1.PEDOT:PSS和4HBS間作用力探討-1H NMR 53
4-2-2.導電高分子包覆能力測試 55
4-2-3.官能基化後塗布在極片上的效果 57
4-3.電池極片之材料表面構型與截面構型分析-SEM、TEM與EDS 58
4-3-1.SEM表面鑑定 58
4-3-2.TEM截面構型分析 63
4-3-3.EDS元素分析 64
4-3-4.XPS材料表面元素鍵結探索 65
4-4.電化學性能測試 69
4-4-1.電池壽命測試 69
4-4-2.變速率充放電測試 74
4-4-3.交流阻抗測試 76
4-4-4.體積能量密度 79
第五章 結論與未來展望 80
第六章 參考文獻 82
參考文獻 [1] S. Y. Kim, J. Lee, B.-H. Kim, Y.-J. Kim, K. S. Yang, M.-S. J. A. a. m. Park, and interfaces, “Facile synthesis of carbon-coated silicon/graphite spherical composites for high-performance lithium-ion batteries,” vol. 8, no. 19, pp. 12109-12117, 2016.
[2] Y. K. Jeong, T.-w. Kwon, I. Lee, T.-S. Kim, A. Coskun, J. W. J. E. Choi, and E. Science, “Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes,” vol. 8, no. 4, pp. 1224-1230, 2015.
[3] A. K. Roy, M. Zhong, M. G. Schwab, A. Binder, S. S. Venkataraman, Z. e. J. A. a. m. Tomović, and interfaces, “Preparation of a binder-free three-dimensional carbon foam/silicon composite as potential material for lithium ion battery anodes,” vol. 8, no. 11, pp. 7343-7348, 2016.
[4] Y. Sun, J. Lopez, H. W. Lee, N. Liu, G. Zheng, C. L. Wu, J. Sun, W. Liu, J. W. Chung, Z. Bao, and Y. Cui, “A Stretchable Graphitic Carbon/Si Anode Enabled by Conformal Coating of a Self-Healing Elastic Polymer,” Adv Mater, vol. 28, no. 12, pp. 2455-61, Mar 23, 2016.
[5] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. J. N. n. Cui, “High-performance lithium battery anodes using silicon nanowires,” vol. 3, no. 1, pp. 31, 2008.
[6] N. Liu, Z. Lu, J. Zhao, M. T. McDowell, H.-W. Lee, W. Zhao, and Y. J. N. n. Cui, “A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes,” vol. 9, no. 3, pp. 187, 2014.
[7] M. Holzapfel, H. Buqa, W. Scheifele, P. Novák, and F.-M. J. C. C. Petrat, “A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion,” no. 12, pp. 1566-1568, 2005.
[8] W. Wang, and P. N. J. A. n. Kumta, “Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes,” vol. 4, no. 4, pp. 2233-2241, 2010.
[9] D. A. Agyeman, K. Song, G. H. Lee, M. Park, and Y. M. J. A. E. M. Kang, “Carbon‐coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy‐density Li‐ion battery,” vol. 6, no. 20, pp. 1600904, 2016.
[10] Z. Zhang, Y. Wang, W. Ren, Q. Tan, Y. Chen, H. Li, Z. Zhong, and F. J. A. C. Su, “Scalable Synthesis of Interconnected Porous Silicon/Carbon Composites by the Rochow Reaction as High‐Performance Anodes of Lithium Ion Batteries,” vol. 126, no. 20, pp. 5265-5269, 2014.
[11] Y. Li, K. Yan, H.-W. Lee, Z. Lu, N. Liu, and Y. J. N. E. Cui, “Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes,” vol. 1, no. 2, pp. 15029, 2016.
[12] F. H. Du, B. Li, W. Fu, Y. J. Xiong, K. X. Wang, and J. S. J. A. m. Chen, “Surface Binding of Polypyrrole on Porous Silicon Hollow Nanospheres for Li‐Ion Battery Anodes with High Structure Stability,” vol. 26, no. 35, pp. 6145-6150, 2014.
[13] Z. Liu, Y. Luo, M. Zhou, W. Wang, N. Gan, S. Okada, and J.-i. J. E. Yamaki, “Enhanced Performance of Yolk-Shell Structured Si-PPy Composite as an Anode for Lithium Ion Batteries,” vol. 83, no. 12, pp. 1067-1070, 2015.
[14] J. Zhou, T. Qian, M. Wang, N. Xu, Q. Zhang, Q. Li, C. J. A. a. m. Yan, and interfaces, “Core–shell coating silicon anode interfaces with coordination complex for stable lithium-ion batteries,” vol. 8, no. 8, pp. 5358-5365, 2016.
[15] H. Wu, G. Yu, L. Pan, N. Liu, M. T. McDowell, Z. Bao, and Y. J. N. c. Cui, “Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles,” vol. 4, pp. 1943, 2013.
[16] Y. Chen, S. Zeng, J. Qian, Y. Wang, Y. Cao, H. Yang, X. J. A. a. m. Ai, and interfaces, “Li+-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries,” vol. 6, no. 5, pp. 3508-3512, 2014.
[17] D. Shao, H. Zhong, and L. J. C. Zhang, “Water‐soluble conductive composite binder containing PEDOT: PSS as conduction promoting agent for Si anode of lithium‐ion batteries,” vol. 1, no. 10, pp. 1679-1687, 2014.
[18] A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, and G. Yushin, “Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid,” ACS Applied Materials & Interfaces, vol. 2, no. 11, pp. 3004-3010, 2010/11/24, 2010.
[19] L. U. Yue, L. Zhang, and H. Zhong, Carboxymethyl chitosan: A new water soluble binder for Si anode of Li-ion batteries, 2014.
[20] S. Komaba, N. Yabuuchi, T. Ozeki, Z.-J. Han, K. Shimomura, H. Yui, Y. Katayama, and T. J. T. J. o. P. C. C. Miura, “Comparative study of sodium polyacrylate and poly (vinylidene fluoride) as binders for high capacity Si–graphite composite negative electrodes in Li-ion batteries,” vol. 116, no. 1, pp. 1380-1389, 2011.
[21] I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. J. S. Yushin, “A major constituent of brown algae for use in high-capacity Li-ion batteries,” vol. 334, no. 6052, pp. 75-79, 2011.
[22] M. H. Ryou, J. Kim, I. Lee, S. Kim, Y. K. Jeong, S. Hong, J. H. Ryu, T. S. Kim, J. K. Park, and H. J. A. m. Lee, “Mussel‐inspired adhesive binders for high‐performance silicon nanoparticle anodes in lithium‐ion batteries,” vol. 25, no. 11, pp. 1571-1576, 2013.
[23] S. Komaba, N. Yabuuchi, T. Ozeki, Z.-J. Han, K. Shimomura, H. Yui, Y. Katayama, and T. Miura, “Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si–Graphite Composite Negative Electrodes in Li-Ion Batteries,” The Journal of Physical Chemistry C, vol. 116, no. 1, pp. 1380-1389, 2012/01/12, 2012.
[24] J. S. Bridel, T. Azaïs, M. Morcrette, J. M. Tarascon, and D. Larcher, “Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries,” Chemistry of Materials, vol. 22, no. 3, pp. 1229-1241, 2010/02/09, 2010.
[25] Y. Liu, T. Matsumura, N. Imanishi, A. Hirano, T. Ichikawa, and Y. Takeda, “Preparation and Characterization of Si ∕ C Composite Coated with Polyaniline as Novel Anodes for Li-Ion Batteries,” vol. 8, no. 11, pp. A599-A602, November 1, 2005 %J Electrochemical and Solid-State Letters, 2005.
[26] L. Wang, T. Liu, X. Peng, W. Zeng, Z. Jin, W. Tian, B. Gao, Y. Zhou, P. K. Chu, and K. J. A. F. M. Huo, “Highly Stretchable Conductive Glue for High‐Performance Silicon Anodes in Advanced Lithium‐Ion Batteries,” vol. 28, no. 3, pp. 1704858, 2018.
[27] T. M. Higgins, S.-H. Park, P. J. King, C. Zhang, N. McEvoy, N. C. Berner, D. Daly, A. Shmeliov, U. Khan, and G. J. A. N. Duesberg, “A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes,” vol. 10, no. 3, pp. 3702-3713, 2016.
[28] J. Liu, Q. Zhang, T. Zhang, J. T. Li, L. Huang, and S. G. J. A. F. M. Sun, “A robust ion‐conductive biopolymer as a binder for Si anodes of lithium‐ion batteries,” vol. 25, no. 23, pp. 3599-3605, 2015.
[29] G. Liu, S. Xun, N. Vukmirovic, X. Song, P. Olalde‐Velasco, H. Zheng, V. S. Battaglia, L. Wang, and W. J. A. M. Yang, “Polymers with tailored electronic structure for high capacity lithium battery electrodes,” vol. 23, no. 40, pp. 4679-4683, 2011.
[30] H. Zhao, Z. Wang, P. Lu, M. Jiang, F. Shi, X. Song, Z. Zheng, X. Zhou, Y. Fu, G. Abdelbast, X. Xiao, Z. Liu, V. S. Battaglia, K. Zaghib, and G. Liu, “Toward Practical Application of Functional Conductive Polymer Binder for a High-Energy Lithium-Ion Battery Design,” Nano Letters, vol. 14, no. 11, pp. 6704-6710, 2014/11/12, 2014.
[31] M. Wu, X. Xiao, N. Vukmirovic, S. Xun, P. K. Das, X. Song, P. Olalde-Velasco, D. Wang, A. Z. Weber, L.-W. Wang, V. S. Battaglia, W. Yang, and G. Liu, “Toward an Ideal Polymer Binder Design for High-Capacity Battery Anodes,” Journal of the American Chemical Society, vol. 135, no. 32, pp. 12048-12056, 2013/08/14, 2013.
[32] J. Liu, Q. Zhang, Z.-Y. Wu, J.-H. Wu, J.-T. Li, L. Huang, and S.-G. Sun, “A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery,” Chemical Communications, vol. 50, no. 48, pp. 6386-6389, 2014.
[33] C. Chen, S. H. Lee, M. Cho, J. Kim, and Y. Lee, “Cross-Linked Chitosan as an Efficient Binder for Si Anode of Li-ion Batteries,” ACS Applied Materials & Interfaces, vol. 8, no. 4, pp. 2658-2665, 2016/02/03, 2016.
[34] I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. Yushin, “A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries,” Science, vol. 334, no. 6052, pp. 75, 2011.
[35] S. Choi, T.-w. Kwon, A. Coskun, and J. W. Choi, “Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries,” Science, vol. 357, no. 6348, pp. 279, 2017.
[36] B. Koo, H. Kim, Y. Cho, K. T. Lee, N.-S. Choi, and J. Cho, “A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries,” Angewandte Chemie International Edition, vol. 51, no. 35, pp. 8762-8767, 2012/08/27, 2012.
[37] J. Song, M. Zhou, R. Yi, T. Xu, M. L. Gordin, D. Tang, Z. Yu, M. Regula, and D. Wang, “Interpenetrated Gel Polymer Binder for High-Performance Silicon Anodes in Lithium-ion Batteries,” Advanced Functional Materials, vol. 24, no. 37, pp. 5904-5910, 2014/10/01, 2014.
[38] D.-E. Yoon, C. Hwang, N.-R. Kang, U. Lee, D. Ahn, J.-Y. Kim, and H.-K. Song, “Dependency of Electrochemical Performances of Silicon Lithium-Ion Batteries on Glycosidic Linkages of Polysaccharide Binders,” ACS Applied Materials & Interfaces, vol. 8, no. 6, pp. 4042-4047, 2016/02/17, 2016.
[39] Y. Bie, J. Yang, Y. Nuli, and J. Wang, “Natural karaya gum as an excellent binder for silicon-based anodes in high-performance lithium-ion batteries,” Journal of Materials Chemistry A, vol. 5, no. 5, pp. 1919-1924, 2017.
[40] M. T. Jeena, J.-I. Lee, S. H. Kim, C. Kim, J.-Y. Kim, S. Park, and J.-H. Ryu, “Multifunctional Molecular Design as an Efficient Polymeric Binder for Silicon Anodes in Lithium-Ion Batteries,” ACS Applied Materials & Interfaces, vol. 6, no. 20, pp. 18001-18007, 2014/10/22, 2014.
[41] M. Ling, Y. Xu, H. Zhao, X. Gu, J. Qiu, S. Li, M. Wu, X. Song, C. Yan, G. Liu, and S. Zhang, “Dual-functional gum arabic binder for silicon anodes in lithium ion batteries,” Nano Energy, vol. 12, pp. 178-185, 2015/03/01/, 2015.
[42] C. Hwang, S. Joo, N.-R. Kang, U. Lee, T.-H. Kim, Y. Jeon, J. Kim, Y.-J. Kim, J.-Y. Kim, S.-K. Kwak, and H.-K. Song, “Breathing silicon anodes for durable high-power operations,” Scientific Reports, vol. 5, pp. 14433, 09/23/online, 2015.
[43] J. Li, R. B. Lewis, and J. R. Dahn, “Sodium Carboxymethyl Cellulose: A Potential Binder for Si Negative Electrodes for Li-Ion Batteries,” vol. 10, no. 2, pp. A17-A20, February 1, 2007 %J Electrochemical and Solid-State Letters, 2007.
[44] S. H. Lee, J. H. Lee, D. H. Nam, M. Cho, J. Kim, C. Chanthad, and Y. Lee, “Epoxidized Natural Rubber/Chitosan Network Binder for Silicon Anode in Lithium-Ion Battery,” ACS Applied Materials & Interfaces, vol. 10, no. 19, pp. 16449-16457, 2018/05/16, 2018.
[45] T. M. Higgins, S.-H. Park, P. J. King, C. Zhang, N. McEvoy, N. C. Berner, D. Daly, A. Shmeliov, U. Khan, G. Duesberg, V. Nicolosi, and J. N. Coleman, “A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes,” ACS Nano, vol. 10, no. 3, pp. 3702-3713, 2016/03/22, 2016.
[46] G. Sandu, B. Ernould, J. Rolland, N. Cheminet, J. Brassinne, P. R. Das, Y. Filinchuk, L. Cheng, L. Komsiyska, P. Dubois, S. Melinte, J.-F. Gohy, R. Lazzaroni, and A. Vlad, “Mechanochemical Synthesis of PEDOT:PSS Hydrogels for Aqueous Formulation of Li-Ion Battery Electrodes,” ACS Applied Materials & Interfaces, vol. 9, no. 40, pp. 34865-34874, 2017/10/11, 2017.
[47] S.-M. Kim, M. H. Kim, S. Y. Choi, J. G. Lee, J. Jang, J. B. Lee, J. H. Ryu, S. S. Hwang, J.-H. Park, K. Shin, Y. G. Kim, and S. M. Oh, “Poly(phenanthrenequinone) as a conductive binder for nano-sized silicon negative electrodes,” Energy & Environmental Science, vol. 8, no. 5, pp. 1538-1543, 2015.
[48] Y. Zhao, L. Yang, Y. Zuo, Z. Song, F. Liu, K. Li, and F. Pan, “Conductive Binder for Si Anode with Boosted Charge Transfer Capability via n-Type Doping,” ACS Applied Materials & Interfaces, vol. 10, no. 33, pp. 27795-27800, 2018/08/22, 2018.
[49] D. Aurbach, Review of Selected Electrode–solution Interactions Which Determine the Performance of Li and Li Ion Batteries, 2000.
[50] P. Verma, P. Maire, and P. Novak, “A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries,” Electrochimica Acta, vol. 55, no. 22, pp. 6332-6341, 2010.
[51] S. Li, X. Xu, X. Shi, B. Li, Y. Zhao, H. Zhang, Y. Li, W. Zhao, X. Cui, and L. Mao, “Composition analysis of the solid electrolyte interphase film on carbon electrode of lithium-ion battery based on lithium difluoro(oxalate)borate and sulfolane,” Journal of Power Sources, vol. 217, pp. 503-508, 2012/11/01/, 2012.
[52] K. Xu, “Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries,” Chemical Reviews, vol. 104, no. 10, pp. 4303-4418, 2004/10/01, 2004.
[53] B. Philippe, R. Dedryvère, M. Gorgoi, H. Rensmo, D. Gonbeau, and K. Edström, “Role of the LiPF6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries – A Photoelectron Spectroscopy Study,” Chemistry of Materials, vol. 25, no. 3, pp. 394-404, 2013/02/12, 2013.
[54] D. E. Arreaga-Salas, A. K. Sra, K. Roodenko, Y. J. Chabal, and C. L. Hinkle, “Progression of Solid Electrolyte Interphase Formation on Hydrogenated Amorphous Silicon Anodes for Lithium-Ion Batteries,” The Journal of Physical Chemistry C, vol. 116, no. 16, pp. 9072-9077, 2012/04/26, 2012.
[55] M. Nie, D. P. Abraham, Y. Chen, A. Bose, and B. L. Lucht, “Silicon Solid Electrolyte Interphase (SEI) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy,” The Journal of Physical Chemistry C, vol. 117, no. 26, pp. 13403-13412, 2013/07/03, 2013.
[56] S. Jiang, B. Hu, R. Sahore, L. Zhang, H. Liu, L. Zhang, W. Lu, B. Zhao, and Z. Zhang, “Surface-Functionalized Silicon Nanoparticles as Anode Material for Lithium-Ion Battery,” ACS Applied Materials & Interfaces, vol. 10, no. 51, pp. 44924-44931, 2018/12/26, 2018.
[57] S.-L. Chou, J.-Z. Wang, M. Choucair, H.-K. Liu, J. A. Stride, and S.-X. Dou, “Enhanced reversible lithium storage in a nanosize silicon/graphene composite,” Electrochemistry Communications, vol. 12, no. 2, pp. 303-306, 2010/02/01/, 2010.
[58] H. Xiang, K. Zhang, G. Ji, J. Y. Lee, C. Zou, X. Chen, and J. Wu, “Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability,” Carbon, vol. 49, no. 5, pp. 1787-1796, 2011/04/01/, 2011.
[59] X. Zhou, Y.-X. Yin, L.-J. Wan, and Y.-G. Guo, “Self-Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithium-Ion Batteries,” Advanced Energy Materials, vol. 2, no. 9, pp. 1086-1090, 2012/09/01, 2012.
[60] J. Luo, X. Zhao, J. Wu, H. D. Jang, H. H Kung, and J. Huang, Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes, 2012.
[61] Y. Li, K. Yan, H.-W. Lee, Z. Lu, N. Liu, and Y. Cui, “Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes,” Nature Energy, vol. 1, pp. 15029, 01/25/online, 2016.
指導教授 諸柏仁 審核日期 2019-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明