博碩士論文 106223053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:44.200.140.218
姓名 崔順鈞(SHUN-CHUN TSUI)  查詢紙本館藏   畢業系所 化學學系
論文名稱 多聯吡啶釕錯合物光敏化染料的合成與性質探討
相關論文
★ 含3,4-乙烯二氧噻吩輔助配位基之鋨、釕金屬錯合物合成與其在染料敏化太陽能電池的應用★ 應用於染料敏化太陽能電池之釕金屬錯合物合成與其性質探討
★ 含共軛配位基之釕錯合物合成與其在染料敏化太陽能電池的應用★ 新型三吡啶釕錯合物光敏化染料的合成與性質探討
★ 釕錯合物敏化太陽能電池元件優化與光伏特性探討★ 金屬錯合物染料敏化太陽能電池的元件優化
★ 新型三吡啶鋨錯合物染料 合成與配位基效應之探討★ 含高度共軛芳香雜環之釕錯合物的合成以應用於染料敏化太陽能電池
★ 有機共吸附染料的合成與性質探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在應用於染料敏化太陽能電池(Dye-sensitized Solar Cells)的諸多染料中,釕錯合物因同時具有金屬-配位基電荷轉移(Metal-to-Ligand Charge Transfer)躍遷,以及配位基之間的電荷轉移(Ligand-to-Ligand Charge Transfer)等躍遷特性,其吸光範圍能涵蓋可見光甚至是部分近紅外光,而且釕錯合物的吸光波段、強度也可藉由配位基的分子設計進一步調整、強化,以利提高其敏化元件的光電流密度與光電轉換效率。本研究是以含有三聯吡啶(Terpyridine)固著配位基的Black dye (N749)為基礎,設計合成兩個新型多聯吡啶釕錯合物(代號為CYC-42Cl與CYC-43Cl),其分子結構特色是透過連接己基噻吩(Hexylthiophene)的雙聯吡啶(Bipyridine)取代原有的兩個異硫氰酸(Isothiocyanate)單牙配位基,此外,也分別使用叔丁基噻吩(tert-Butylthiophene)和2-氯噻吩(2-Chlorothiophene)置換原先三聯吡啶固著配位基上的一個羧酸基,藉此比較、探討引入叔丁基和氯原子所產生的推拉電子效應、以及分子間作用力差異。在二甲基甲醯胺溶液中,CYC-42Cl和CYC-43Cl不僅展現了優異的吸光能力(其最低能量的吸收峰波長皆為542 nm,吸收係數則分別為19.9 × 103 M-1 cm-1與18.7 × 103 M-1 cm-1),其前置軌域的位能也十分相近,儘管如此,在沒有使用任何共吸附劑的條件下,CYC-42Cl和CYC-43Cl敏化元件的光電轉換效率分別為5.40%與6.47%;導入共吸附劑進行初步優化後,兩者敏化元件的光電轉換效率則分別為7.89%與7.71%,這些結果顯示,在釕錯合物固著配位基上引入氯原子時,其產生的分子間作用力對元件特性之影響程度是比拉電子效應更加顯著,此發現也可望為新型多聯吡啶釕錯合物的分子設計提供新方向。
摘要(英) Among numerous photosensitizers applied in dye-sensitized solar cells (DSCs), ruthenium (Ru) complexes simultaneously exhibit metal-to-ligand charge transfer (MLCT) and ligand-to-ligand charge transfer (LLCT) transi-tions. These transition characteristics allow their absorption range to cover visible light and even extend into the near-infrared region. Moreover, their absorption bands and intensities can be further adjusted and enhanced through the molecular-engineering of the ligands, which can improve the short-circuit current density and power conversion efficiency (PCE) of the corresponding devices. This study is initiated from black dye (N749) con-taining one terpyridine anchoring ligand. We designed and synthesized two new polypyridyl Ru complexes (named CYC-42Cl and CYC-43Cl). The key feature of their molecular structures is that two isothiocyanate mono-dentate ligands on black dye were replaced by bis-hexylthiophene-substituted bipyridine. In addition, tert-butylthiophene and chloro-thiophene were introduced in the anchoring ligand to replace a carboxylic acid group for comparing the push-pull effects produced by tert-butyl group and chlo-rine atoms, as well as investigating the differences in intermolecular interac-tion. In DMF, CYC-42Cl and CYC-43Cl exhibit excellent light absorption capabilities (the lowest energy absorption peak wavelength is both at 542 nm, and the absorption coefficients are 19.9 × 103 M-1 cm-1 and 18.7 × 103 M-1 cm-1, respectively). Their frontier orbitals potentials are also very simi-lar. However, the corresponding devices (without any coadsorbent) show the PCE of 5.40% and 6.47%, respectively. After adding coadsorbents for pre-liminary optimization, the PCE of devices sensitized with the two sensitized devices are improved to 7.89% and 7.71%, respectively. These results demonstrate that when introducing chlorine in the anchoring ligand of Ru complexes, the impact of the induced intermolecular interaction on the prop-erties of the photosensitizers is more significant than the electron-withdrawing effect. This new finding also holds promise for providing new clues in the molecular design of new polypyridyl ruthenium complexes.
關鍵字(中) ★ 染料敏化太陽能電池;多聯吡啶釕錯合物 關鍵字(英) ★ Dye-sensitized solar cell
論文目次 中文摘要 vi
Abstract viii
謝誌 x
目錄 xi
圖目錄 xiii
表目錄 xviii
附圖目錄 xix
第一章、緒論 1
1-1前言 1
1-2太陽光譜與太陽能電池的光伏參數 2
1-3太陽能電池的發展歷史簡介 7
1-4 染料敏化太陽能電池的工作原理 10
1-5染料分子設計相關文獻探討 13
1-5-1釕錯合物之結構設計 15
1-5-2 tert-Butyl 基團在釕錯合物染料中的應用 40
1-5-3 鹵素原子在有機薄膜太陽能電池中的應用 43
1-5-4 氯原子在釕錯合物中的應用 50
1-5-5鹵素原子在有機小分子染料的應用 52
1-6 研究動機 60
第二章 實驗部分 62
2-1實驗藥品 62
2-2中間產物之結構與簡稱 67
2-3 儀器分析與樣品製備 71
2-4 合成流程及實驗 79
2-4-1 在四號位置溴基取代之三牙酯基的合成 79
2-4-2 三牙基 Ligand-42-ester之合成 87
2-4-3 三牙基Ligand-43-ester之合成 92
2-4-4 二牙基 (BHT-bpy)之合成 95
2-4-5釕錯合物CYC-42Cl之合成 98
2-4-6釕錯合物CYC-43Cl之合成 104
2-5 元件組裝與光電轉換效率量測 110
2-5-1染料敏化太陽能電池元件組裝流程 110
2-5-2 DSCs光電轉換效率量測系統 113
第三章 結果與討論 116
3-1合成與純化問題探討 116
3-1-1三牙配位基Ligand-42-ester 合成所遇到的問題與解決方法 116
3-1-2三牙配位基Ligand-42-ester與Ligand-43-ester 的純化差異 120
3-1-3 釕錯合物CYC-42Cl與CYC-43Cl的合成探討與純化過程 122
3-2 三牙配位基結構鑑定與比較(NMR光譜、MASS數據) 135
3-2-1 Ligand-42-ester與Ligand-43-ester之1H-NMR光譜(aromatic)與訊號標定 135
3-2-2 Ligand-42-ester與Ligand-43-ester之13C-NMR光譜與訊號標定 136
3-2-3 Ligand-42-ester與Ligand-43-ester的MALDI-TOF MASS量測結果 138
3-3 釕錯合物染料結構鑑定(NMR光譜、MASS與EA數據) 140
3-3-1 CYC-42Cl與CYC-43Cl的1H-NMR光譜與訊號標定 140
3-3-2 CYC-42Cl與CYC-43Cl之 DEPT-135-NMR光譜(aromatic)訊號的標定 142
3-3-3 CYC-42Cl與CYC-43Cl之13C-NMR光譜與訊號標定 144
3-3-4 CYC-42Cl與CYC-43Cl之19F-NMR與31P-NMR光譜結果 145
3-3-5 CYC-42Cl與CYC-43Cl之MALDI-TOF MASS 與EA量測結果 147
3-4 釕錯合物的光物理性質探討 149
3-5 釕錯合物的分子理論計算(TDDFT與EDDM) 153
3-6 釕錯合物電化學性質與前置分子軌域位能 155
3-7 釕錯合物敏化電池元件之性能探討 159
結論 166
參考文獻 168
附錄 180
參考文獻 [1] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J. E. Moser, M. Grätzel and A. Hagfeldt, Dye-sensitized solar cells for efficient power generation under ambient lighting, Nat. Photonics 2017, 11, 372−378.
[2] https://enlitechnology.com/zh-hant/blog-zh-hant/pv-zh-hant/ss-x-solar-simulatior-zh-hant/solar-simulator‐01/
[3] https://www.laserfocusworld.com/lasers-sources/article /16566681/photovoltaics-measuring-the-sun (May 21, 2009)
[4] https://www.pveducation.org/pvcdrom/solar-cell-operation/impact-of-both-series-and-shunt-resistance
[5] E. Becquerel, Mémoire sur les effets électriques produits sous l′influence des rayons solaires, C. R. Acad. Sci. 1839, 9, 561−567.
[6] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan and G. Luo, Electrolytes in dye-sensitized solar cells, Chem. Rev. 2015, 115, 2136−2173.
[7] M. A. Green, Y. Hishikawa, E. D. Dunlop, M. Yoshita, N. Kopidakis, K, K. Bothe, G. Siefer and X. Hao, Solar cell efficiency tables (version 63), Prog. Photovolt. Res. Appl. 2024, 32, 3−13.
[8] W. Zhang, Y. Wu, H. W. Bahng, Y. Cao, C. Yi, Y. Saygili, J. Luo, Y. Liu, L. Kavan, J. E. Moser, A. Hagfeldt, H. Tian, S. M. Zakeeruddin, W. H. Zhu and M. Grätzel, Comprehensive control of voltage loss enables 11.7% efficient solid-state dye-sensitized solar cells, Energy Environ. Sci. 2018, 11, 1779−1787.
[9] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency, Science 2011, 334, 629−634.
[10] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti and A. B. Holmes, Efficient photodiodes from interpenetrating polymer networks, Nature 1995, 376, 498−500.
[11] Y. Zhang, H. Yao, S. Zhang, Y. Qin, J. Zhang, L. Yang, W. Li, Z. Wei, F. Gao and J. Hou, Fluorination vs. chlorination: A case study on high performance organic photovoltaic materials, Sci. China Chem. 2018, 61, 1328−1337.
[12] A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic, J. Am. Chem. Soc. 2009, 131, 6050−6051.
[13] X. Liu, B. Zheng1, L. Shi, S Zhou, J. Xu, Z. Liu, J. S. Yun, E. Choi1, M. Zhang, Yinhua Lv, W. H. Zhang, J. Huang, C. Li, K. Sun, J. Seidel, M. He, J. Peng, X. Hao and M. Green, Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive, Nat. Photonics 2023, 17, 96−105.
[14] K. Mahmood, S. Sarwar and M. T. Mehran, Current status of electron transport layers in perovskite solar cells: Materials and properties, RSC Adv. 2017, 7, 17044−17062.
[15] R. J. Ellingson, M. C. Beard, J. C. Johnson, P. Yu, O. I. Micic, A. J. Nozik, A. Shabaev and A. L. Efros, Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots, Nano Lett. 2005, 5, 865−871.
[16] Z. Pan, H. Rao, I. M. Seró, J. Bisquert and X. Zhong, Quantum dot-sensitized solar cells, Chem. Soc. Rev. 2018, 47, 7659−7702.
[17] S. Namba and Y. Hishiki, Color sensitization of zinc oxide with cyanine dyes, J. Phys. Chem. 1965, 69, 774−779.
[18] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Dye sensitised zinc oxide: Aqueous electrolyte: platinum photocell, Nature 1976, 261, 402−403.
[19] M. P. D. Edwards, J. B. Goodenough, A. Hamnett, K. R. Seddon and R. D. Wright, Sensitisation of semiconducting electrodes with ruthenium-based dyes, Faraday Discuss. Chem. Soc. 1980, 70, 285−298.
[20] B. O′Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films Nature 1991, 353, 737−740.
[21] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan and G. Luo, Counter electrodes in dye-sensitized solar cells, Chem. Soc. Rev. 2017, 46, 5975−6023.
[22] S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells, J. Phys. Chem. B 2003, 107, 8607−8611.
[23] G. Schlichtho1rl, S. Y. Huang, J. Sprague and A. J. Frank, Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy, J. Phys. Chem. B 1997, 101, 8141−8155.
[24] T. L. Hsieh, H. W. Chen, C. W. Kung, C. C. Wang, R. Vittal and K. C. Ho, A highly efficient dye-sensitized solar cell with a platinum nanoflowers counter electrode, J. Mater. Chem. 2012, 22, 5550−5559.
[25] C. C. Clark and G. J. Meyer, Tuning open circuit photovoltages with tripodal sensitizers, J. Phys. Chem. B 2006, 110, 11044−11046.
[26] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Dye-sensitized solar cells, Chem. Rev. 2010, 110, 6595−6663.
[27] Y. Numata, A. Islam, H. Chenb and L. Han, Aggregation-free branch-type organic dye with a twisted molecular architecture for dye-sensitized solar cells, Energy Environ. Sci. 2012, 5, 8548−8552.
[28] Y. Ren, D. Zhang, J. Suo, Y. Cao, F. T. Eickemeyer, N. Vlachopoulos, S. M. Zakeeruddin, A. Hagfeldt and M. Grätzel, Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells, Nature 2023, 613, 60−65.
[29] S. Yun, P. D. Lund and A. Hinsch, Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells, Energy Environ. Sci. 2015, 8, 3495−3514.
[30] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin and M. Grätzel, Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells, ACS Nano 2009, 3, 3103−3109.
[31] S. Mathew, A. Yelia, P. Gao, R. H. Baker, B. F. Curchod, N. A. Astani, I. Tavemelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat. Chem. 2014, 6, 242−247.
[32] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Müeller, P. Liska. N. Vlachopoulos and M. Grätzel, Conversion of light to electricity by cis-X2bis (2,2-bipyridyl-4,4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc. 1993, 115, 6382−6390.
[33] M. K. Nazeeruddin, S. M. Zakeeruddin, R. H. Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C. H. Fischer and M. Grätzel, Acid-base equilibria of (2,2-bipyridyl-4,4-dicarboxylic acid) ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania, Inorg. Chem. 1999, 38, 6298−6305.
[34] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers, J. Am. Chem. Soc. 2005, 127, 16835−16847.
[35] P. A. Andenon, G. F. Strouse, J. A. Treadway, F. R. Keene and T. J. Meyer, Black MLCT absorbers, Inorg. Chem. 1994, 33, 3863-3864.
[36] S. Aghazada and M. K. Nazeeruddin, Ruthenium complexes as sensitizers in dye-sensitized solar cells, Inorganics 2018, 6, articles 52.
[37] M. K. Nazeeruddin, P. Péchy, T. Renouard. S. M. Zakeeruddin, R. H. Baker, P. Comte, L. C. P. Liska, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Grätzel, Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells, J. Am. Chem. Soc. 2001, 123, 1613−1624.
[38] Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao and P. Wang, Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio)thiophene conjugated bipyridine, J. Phys. Chem. C 2009, 113, 6290−6297.
[39] C. Y. Chen, S. J. Wu, J. Y. Li, C. G. Wu, J. G. Chen and K. C. Ho, A new route to enhance the light-harvesting capability of ruthenium complexes for dye-sensitized solar cells, Adv. Mater. 2007, 19, 3888−3891.
[40] T. K. Chang and Y. Chi, Bis-tridentate Ru(II) sensitizers with a spatially encumbered 2,6-dipyrazolylpyridine ancillary ligand for dye-sensitized solar cells, RSC Adv. 2017, 7, 42013−42023.
[41] 馮祐銘,2019,國立中央大學化學系研究所碩士學位論文(新型三吡啶釕錯合物光敏化染料的合成與性質探討)。
[42] Y. Numata, S, P. Singh, A. Islam, M. Iwamura, A. Imai, K. Nozaki and L. Han, Enhanced light-harvesting capability of a panchromatic Ru (II) sensitizer based on π-extended terpyridine with a 4-methylstyryl group for dye-sensitized solar cells, Adv. Funct. Mater. 2013, 23, 1817−1823.
[43] H. Ozawa, T. Sugiura, T. Kuroda, K. Nozawa and H. Arakawa, Highly efficient dye-sensitized solar cell based on a ruthenium sensitizer bearing a hexylthiophene modified terpyridine ligand, J. Mater. Chem. A 2016, 4, 1762−1770.
[44] F. Sauvage, J. D. Decoppet, M. Zhang, S. M. Zakeeruddin, P. Comte, M. Nazeeruddin, P. Wang and M. Grätzel, Effect of sensitizer adsorption temperature on the performance of dye-sensitized solar cells, J. Am. Chem. Soc. 2011, 133, 9304−9310.
[45] H. Ozawa, Y. Tawaraya and H. Arakawa, Effects of the alkyl chain length of imidazolium iodide in the electrolyte solution on the performance of black-dye-based dye-sensitized solar cells, Electrochim. Acta 2015, 151, 447−452.
[46] M. Chandrasekharam, G. Rajkumar, C. S. Rao, T. Suresh, Y. Soujanya, P. Y. Reddy, High molar extinction coefficient Ru(II)-mixed ligand polypyridyl complexes for dye sensitized solar cell application, Adv. Optoelectron 2011, Article ID 432803.
[47] W. C. Chen, F. T. Kong, R. Ghadari, Z. Q. Li, X. P. Liu, T. Yu, Y. Huang, Y. Huang, T. Hayat and S. Y. Dai, Insight into electron-donating ancillary ligands in ruthenium terpyridyl complexes configuration on performances of dye-sensitized solar cells, J. Phys. Chem. C 2017, 121, 8752−8759.
[48] S. Mukherjee, D. E. Torres and E. Jakubikova, HOMO inversion as a strategy for improving the light-absorption properties of Fe(II) chromophores, Chem. Sci. 2017, 8, 8115−8126.
[49] C. P. Kumar, V. Anusha, K. Narayanaswamy, K. Bhanuprakash, A. Islam, L. Han, S. P. Singh and M. Chandrasekharam, New ruthenium complexes (Ru[3+2+1]) bearing π-extended 4-methylstyryl terpyridine and unsymmetrical bipyridine ligands for DSSC applications, Inorganica Chim. Acta 2015, 435, 46−52.
[50] K. L. Wu, W. P. Ku, J. N. Clifford, E. Palomares, S. T. Ho, Y. Chi, S. H. Liu, P. T. Chou, M. K. Nazeeruddin and M. Grätzel, Harnessing the open-circuit voltage via a new series of Ru(II) sensitizers bearing (iso-)quinolinyl pyrazolate ancillaries, Energy Environ. Sci. 2013, 6, 859.
[51] Q. Wang, M. Li, X. Zhang, Y. Qin, J. Wang, J. Zhang, J. Hou, R. A. J. Janssen and Y. Geng, Carboxylate-substituted polythiophenes for efficient fullerene-free polymer solar cells: The effect of chlorination on their properties, Macromolecules 2019, 52, 4464‐4474.
[52] J. Mei, Y. Diao, A. L. Appleton, L. Fang and Z. Bao, Integrated materials design of organic semiconductors for field-effect transistors, J. Am. Chem. Soc. 2013, 135, 6724−6746.
[53] B. Kippelen and J. L. Brédas, Organic photovoltaics, Energy Environ. Sci. 2009, 2, 251−261.
[54] C. Duan, F. Huang and Y. Cao, Recent development of push-pull conjugated polymers for bulk-heterojunction photovoltaics: Rational design and fine tailoring of molecular structures, J. Mater. Chem. 2012, 22, 10416−10434.
[55] https://www.chemistry online.com/generalities/electronegativity-table/ (2023)
[56] J. C. Slater, Atomic radii in crystals, J. Chem. Phys. 1964, 41, 3199−3204.
[57] X. Zhang, H. Bronstein, A. J. Kronemeijer, J. Smith, Y. Kim, R. J. Kline, L. J. Richter, T. D. Anthopoulos, H. Sirringhaus, K. Song, M. Heeney, W. Zhang, I. McCulloch and D. M. DeLongchamp, Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer, Nat. Commun. 2013, 4, 2238.
[58] R. Chen, T. Jin, Y. Liu, T. Zhang, X. Liu, L. Zhang, Y. Chen, H. Li, X. Duan and Y. Han, Improving carrier mobility of near amorphous donor-acceptor conjugated polymer thin films via promoting intensive and continuous polymer aggregations, Macromolecules 2023, 56, 5356−5368.
[59] N. O. Komatsuzaki, M. Yanagida, T. Funaki, K. Kasuga, K. Sayama and H. Sugihara, Near-IR dye-sensitized solar cells using a new type of ruthenium complexes having 2,6-bis(quinolin-2-yl)pyridine derivatives, Sol. Energ. Mat. Sol. Cells 2011, 95, 310‐314.
[60] G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati and G. Terraneo, The halogen bond, Chem. Rev. 2016, 116, 2478−2601.
[61] S. J. C. Simon, F. G. L. Parlane, W. B. Swords, C. W. Kellett, C. Du, B. Lam, R. K. Dean, K. Hu, G. J. Meyer and C. P. Berlinguette, Halogen bonding promotes higher dye-sensitized solar cell photovoltages, J. Am. Chem. Soc. 2016, 138, 10406−10409.
[62] F. G. L. Parlane, C. Mustoe, C. W. Kellett, S. J. Simon, W. B. Swords, G. J. Meyer, P. Kennepohl and C. P. Berlinguette, Spectroscopic detection of halogen bonding resolves dye regeneration in the dye-sensitized solar cell, Nat. Commun. 2017, 8, 1761.
[63] I. S. Nawghare, A. K. Singh, A. Maibam, S. S. Deshmukh, S. Krishnamurty, K. Krishnamoorthy and J. Nithyanandhan, Halogen functionalized D–A–D-type unsymmetrical squaraine dyes for dye-sensitized solar cells, Mater. Adv. 2023, 4, 3270−2384.
[64] C. Y. Chen, Y. M. Feng, T. Y. Wu, Y. C. Liu, S. Y. Chen, T. Y. Lin, H. H. G. Tsai and C. G. Wu, Terpyridyl ruthenium complexes functionalized with conjugated heterocycles for panchromatic dye-sensitized solar cells, ACS Appl. Energy Mater. 2021, 4, 13461−13470.
[65] H. Ozawa, T. Kuroda, S. Harada and H. Arakawa, Efficient ruthenium sensitizer with a terpyridine ligand having a hexylthiophene unit for dye-sensitized solar cells: Effects of the substituent position on the solar cell performance, Eur. J. Inorg. Chem. 2014, 2014, 4737−4739.
[66] Z. Chen,T. F. Jaramillo, T. G. Deutsch, A. K. Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner and H. N. Dinh, Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols, J. Mater. Res. 2010, 25, 3−16.
[67] https://www.perfectlight.cn/news/detail-122.html (October 29, 2000)
[68] L. I. Belen′kii and A. P. Yakubov, Stable heteroareniumions - VIII some transformations of alkylthiophenium ions and new synthesis of 2-t-butylthiophene, Tetrahedron 1984, 40, 2471−2417.
[69] S. V. Kamat, V. Puri and R. K. Puri, Determination of the optical constants of a vacuum evaporated polythiophene thin film, Phys. Scr. 2011, 84, 045801.
[70] S. Asano, H. N. Tanaka, A. Imamura, H. Ishida and H. Ando, P-tert-butyl groups improve the utility of aromatic protecting groups in carbohydrate synthesis, Org. Lett. 2019, 21, 4197−4200.
[71] Y. J. Cho, K. S. Yook and J. Y. Lee, High efficiency in a solution-processed thermally activated delayed-fluorescence device using a delayed-fluorescence emitting material with improved solubility, Adv. Mater. 2014, 26, 6642‐6646.
[72] J. Cioslowski, G. Liu and D. Moncrieff, Thermochemistry of homolytic C-C, C-H, and C-Cl bond dissociations in polychloroethanes: Benchmark electronic structure calculations, J. Am. Chem. Soc. 1997, 119, 11452−11457.
[73] https://yiqi-oss.oss-cn-hangzhou.aliyuncs.com/alyun/900101585/solution/190591.pdf.
[74] S. Li and D. B. Chesnut, Intramolecular van der waals interactions and chemical shifts: A model for β-and γ-effects, Magn. Reson. Chem. 1985, 23, 625−638.
[75] O. Kohle, S. Ruile and M. Grätzel, Ruthenium(II) charge-transfer sensitizers containing 4,4′-dicarboxy-2,2′-bipyridine. synthesis, properties, and bonding mode of coordinated thio- and selenocyanates, Inorg. Chem. 1996, 35, 4779−4787.
[76] F. R. Dai, W. J. Wu, Q. W. Wang, H. Tian and W. Y. Wong, Heteroleptic ruthenium complexes containing uncommon 5,5′-disubstituted-2,2′-bipyridine chromophores for dye-sensitized solar cells, Dalton Trans. 2011, 40, 2314−2323.
[77] H. Shahroosvand, S. Abaspour, B. Pashaei, E. Radicchi, F. D. Angelis and F. Bonaccorso, A ruthenium tetrazole complex-based high efficiency near infrared light electrochemical cell, Chem. Commun. 2017, 53, 6211−6214.
[78] D. Zhang, M. Cai, Y. Zhang, D. Zhang and L. Duan, Sterically shielded blue thermally activated delayed fluorescence emitters with improved efficiency and stability, Mater. Horiz. 2016, 3, 145−151.
[79] S. H. Aung, Y. Hao, T. Z. Oo and G. Boschloo, 2‑(4-Butoxyphenyl)‑ N‑hydroxyacetamide: An efficient preadsorber for dye-sensitized solar cells, ACS Omega 2017, 2, 1820−1825.
[80] H. Akamatu, H. Inokuchi and Y. Matsunaga, Electrical conductivity of the perylene-bromine complex, Nature 1954, 173, 168−169.
[81] M. Su, X. Yan, X. Guo, Q. Li, Y. Zhang and C. Li, Two orthogonal halogen-bonding interactions directed two-dimensional crystalline supramolecular J-dimer lamellae, Chem. Eur. J. 2020, 26, 4505−4509.
指導教授 陳家原 審核日期 2024-1-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明