博碩士論文 106223054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.145.175.243
姓名 陳世昀(Shih-Yun Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 有機共吸附染料的合成與性質探討
相關論文
★ 含3,4-乙烯二氧噻吩輔助配位基之鋨、釕金屬錯合物合成與其在染料敏化太陽能電池的應用★ 應用於染料敏化太陽能電池之釕金屬錯合物合成與其性質探討
★ 含共軛配位基之釕錯合物合成與其在染料敏化太陽能電池的應用★ 新型三吡啶釕錯合物光敏化染料的合成與性質探討
★ 釕錯合物敏化太陽能電池元件優化與光伏特性探討★ 金屬錯合物染料敏化太陽能電池的元件優化
★ 新型三吡啶鋨錯合物染料 合成與配位基效應之探討★ 含高度共軛芳香雜環之釕錯合物的合成以應用於染料敏化太陽能電池
★ 多聯吡啶釕錯合物光敏化染料的合成與性質探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-18以後開放)
摘要(中) 染料敏化太陽能電池(Dye-sensitized Solar Cells,DSC)是具有高度應用潛力的新世代光伏技術,為拓展其應用性,提高元件的光電轉換效率一直是研發重點;2012年Black dye搭配Y1共敏化元件除了創下新的光電轉換效率紀錄(11.4%),也提供一個好的電池性能改善方法。本研究以Y1為雛型設計合成四個新的有機共吸附染料(Co-Adsorption Dyes;代號分別為CAD-1、CAD-3、CAD-5及CAD-7),以提高實驗室先前研發的釕錯合物染料CYC-37敏化元件效能。CADs系列分子於DMF溶液態的最大吸收波長較Y1紅位移至少34 nm,莫爾吸收係數也皆高於Y1的31000 M-1 cm-1。元件初步測試結果顯示,縮短CYC-37敏化電極於CADs溶液的後敏化浸泡時間以降低分子聚集,CADs的高吸光特性可以有效提高CYC-37敏化元件於波長範圍370 ~ 560 nm的光電轉換效能;相較於單獨使用CYC-37敏化的電池,使用CAD-3後敏化0.5小時可大幅增加元件對470 nm光子的轉換能力達14.4% (相同條件下Y1後敏化電池僅上升4.7%)。在AM 1.5G模擬太陽光照射下,CAD-3後敏化電池的短路電流密度為17.63 mA cm-2,優於CYC-37單一敏化元件以及Y1後敏化電池的表現。本研究不僅可作為後續設計高效能有機共吸附染料的基礎,也為未來後敏化元件製程優化提供明確的指引。
摘要(英) Dye-sensitized solar cells (DSCs) are promising photovoltaic technology. For broadening the applications, increasing the power conversion efficiency (PCE) of devices is important. In 2012, the device co-sensitized with Black dye and Y1 reaching a record-high PCE of 11.4% demonstrated a good approach to improve the PCE. In this research, we design four new co-adsorption organic dyes (coded CAD-1, CAD-3, CAD-5 and CAD-7) based on Y1 to increase the PCE of devices sensitized with CYC-37 (a ruthenium complex we previously developed). Compared with Y1, the absorption maximum (max) of CADs in DMF red-shifts over 34 nm, and the molar absorption coefficient is larger than 31000 M-1 cm-1. The preliminary results of the devices sensitized with CYC-37 and CADs show that CADs exhibiting high light-harvesting capacity can significantly enhance the incident photon-to-current conversion (IPCE) performance in the wavelength range of 370 ~ 560 nm. Compared with the cell based only on CYC-37, the device post-sensitized with CAD-3 for 0.5 hour increases 14.4% of the IPCE efficiency at 470 nm, superior to that of co-sensitizer Y1 (4.7%). Under the illumination of AM 1.5G simulated sunlight, the device post-sensitized with CAD-3 yields the short-circuit current density of 17.63 mA cm-2, higher than that those of CYC-37 based device and Y1 post-treated cell. The new results of this research provide not only the basis for designing efficient co-adsorption dyes, but also the guidelines of optimizing post-sensitization processes.
關鍵字(中) ★ 染料敏化太陽能電池
★ 有機共吸附染料
關鍵字(英)
論文目次 中文摘要 I
Abstract II
謝誌 III
圖目錄 VI
表目錄 XII
第一章 緒論 1
1-1前言 1
1-2太陽光譜與太陽能電池的光伏參數 1
1-3太陽能電池的發展歷史簡介 4
1-4染料敏化太陽能電池的工作原理 6
1-5染料分子設計相關文獻探討 8
1-5-1有機共吸附染料的分子設計 11
1-5-2含Oligoether單元之染料 30
1-6研究動機 37
第二章 實驗部分 39
2-1實驗藥品 39
2-2中間產物之結構與簡稱 45
2-3合成流程及實驗 52
2-3-2 釕錯合物CYC-37之合成 56
2-3-3 CAD-1之合成 59
2-3-4 CAD-3之合成 67
2-3-5 CAD-5之合成 76
2-3-6 CAD-7之合成 84
2-4 儀器分析與樣品製備 93
2-5 元件組裝與光電轉換效率量測 99
2-5-1 DSCs元件組裝流程 99
2-5-2 DSCs光電轉換效率量測系統 102
第三章 結果與討論 104
3-1 合成相關探討 104
3-1-1 CADs染料接上第二個噻吩的反應途徑 104
3-1-2 CADs最終產物的純化 107
3-2 CADs染料結構鑑定與光物理性質探討 111
3-2-1 CADs染料結構鑑定 111
3-2-2 CADs系列分子與Y1的光物理性質探討 119
3-3 有機共吸附染料與CYC-37的電化學性質與前置軌域位能 123
3-4 有機共吸附染料與CYC-37敏化電池的光伏性能探討 127
第四章 結論 139
參考文獻 141
附錄 148
參考文獻 [1] (a) M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J. E. Moser, M. Grätzel and A. Hagfeldt, "Dye-sensitized solar cells for efficient power generation under ambient lighting" Nat. Photon. 2017, 11, 372–378; (b) C. Y. Chen, T. Y. Kuo, C. W. Huang, Z. H. Jian, P. T. Hsiao, C. L. Wang, J. C. Lin, C. Y. Chen, C. H. Chen, Y. L. Tung, M. C. Tsai, K. M. Huang, C. M. Chen, C. W. Hsu, Y. C. Chen, Z. Pei, Y. S. Tingare, H. H. Chou, C. Y. Yeh, C. Y. Lin, Y. L. Lee, H. W. Lin, H. F. Meng, P. T. Chou and C. G. Wu, "Thermal and angular dependence of next-generation photovoltaics under indoor lighting" Prog. Photovolt. Res. Appl. 2020, 28, 111−121.
[2] (a) "http: // www. pveducation. org / pvcdrom / appendices / standard -solar- spectra"; (b) "http: // www. laserfbcusworld. com/articles/ 2009 / 05 / photovoltaics– measuring– the- sun. htmL".
[3] "https://www.pveducation.org/pvcdrom/solar-cell-operation/impact-of-both-series-and-shunt-resistance".
[4] E. Becquerel, "Mémoire sur les effets électriques produits sous l′influence des rayons solaires" C. R. Acad. Sci. 1839, 9, 561–567.
[5] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan and G. Luo, "Electrolytes in dye-sensitized solar cells" Chem. Rev. 2015, 115, 2136–2173.
[6] M. A. Green, E. D. Dunlop, J. H. Ebinger, M. Yoshita, N. Kopidakis, X. Hao, "Solar cell efficiency tables (version 56)" Prog. Photovolt. Res. Appl. 2020, 28, 629–638.
[7] https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200803.pdf
[8] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, "Dye sensitised zinc oxide: aqueous electrolyte: Platinum photocell" Nature 1976, 261, 402–403.
[9] B. Regan and M. Grätzel, "A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films" Nature 1991, 353, 737–740.
[10] J. Wu, Z. Lan, J. Lin, M. Huang and Y. Huang, "Counter electrodes in dye-sensitized solar cells" Chem. Soc. Rev. 2017, 46, 5975–6023.
[11] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, "Dye-sensitized solar cells" Chem. Rev. 2010, 110, 6595–6663.
[12] L. Han, A. Islam, H. Chen, C. Malapaka, B. C. Jeevi, S. Zhang, X. Yang and M. Yanagida, "High-efficiency dye-sensitized solar cell with a novel co-adsorbent" Energy Environ. Sci. 2012, 5, 6057–6060.
[13] J. M. Cole, G. Pepe, O. K. Al Bahri and C. B. Cooper, "Cosensitization in dye-sensitized solar cells" Chem. Rev. 2019, 119, 7279–7327.
[14] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes" Chem. Commun. 2015, 51, 15894–15897.
[15] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, S. M. Zakeeruddin, J. H. Tsai, C. Grätzel, C. G. Wu and M. Grätzel, "Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells" ACS Nano 2009, 3, 3103–3109.
[16] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang and P. Wang, "High-efficiency dye-sensitized solar cells: The influence of lithium ions on exciton dissociation, charge recombination, and surface states" ACS Nano 2010, 4, 6032–6038.
[17] S. Yun, Y. Qin, A. R. Uhl, N. Vlachopoulos, M. Yin, D. Li, X. Han and A. Hagfeldt, "New-generation integrated devices based on dye-sensitized and perovskite solar cells" Energy Environ. Sci. 2018, 11, 476–526.
[18] S. P. Singh, M. Chandrasekharam, K. S. V. Gupta, A. Islam, L. Han and G. D. Sharma, "Co-sensitization of amphiphilic ruthenium (II) sensitizer with a metal free organic dye: Improved photovoltaic performance of dye sensitized solar cells" Org. Electron. 2013, 14, 1237–1241.
[19] G. Koyyada, S. Shome, M. Chandrasekharam, G. D. Sharma and S. P. Singh, "High performance dye-sensitized solar cell from a cocktail solution of a ruthenium dye and metal free organic dye" RSC Adv. 2016, 6, 41151–41155.
[20] H. Ozawa, R. Shimizu and H. Arakawa, "Significant improvement in the conversion efficiency of black-dye-based dye-sensitized solar cells by cosensitization with organic dye" RSC Adv. 2012, 2, 3198–3200.
[21] S. Zhang, A. Islam, X. Yang, C. Qin, K. Zhang, Y. Numata, H. Chen and L. Han, "Improvement of spectral response by co-sensitization for high efficiency dye-sensitized solar cells" J. Mater. Chem. A 2013, 1, 4812– 4819.
[22] A. Islam, T. Swetha, M. R. Karim, M. Akhtaruzzaman, L. Han and S. P. Singh, "Tuning of spectral response by co-sensitization in black-dye based dye-sensitized solar cell" Phys. Status Solidi A 2015, 3, 651–656.
[23] D. Kuang, C. Klein, H. J. Snaith, J. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel, "Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells: influence of lithium ions on the photovoltaic performance of liquid and solid-state cells" Nano Lett. 2006, 6, 769–773.
[24] Y. Lu, Q. Liu, J. Luo, B. Wang, T. Feng, X. Zhou, X. Liu and Y. Xie, "Solar cells sensitized with porphyrin dyes containing oligo (ethylene glycol) units: a high efficiency beyond 12%" ChemSusChem 2019, 12, 2802–2809.
[25] N. Shibayama, H. Ozawa, M. Abe, Y. Ooyama and H. Arakawa, "A new cosensitization method using the Lewis acid sites of a TiO2 photoelectrode for dye-sensitized solar cells" Chem. Commun. 2014, 60, 6398–6401.
[26] N. Shibayama, H. Ozawa, Y. Ooyama and H. Arakawa, "Highly efficient cosensitized plastic-substrate dye-sensitized solar cells with black dye and pyridine-anchor organic dye" Bull. Chem. Soc. Jpn. 2015, 88, 366–374.
[27] R. Y. Ogura, S. Nakane, M. Morooka, M. Orihashi, Y. Suzuki and K. Noda, "High-performance dye-sensitized solar cell with a multiple dye system" Appl. Phys. Lett. 2009, 7, 94–97.
[28] H. Ozawa, T. Kuroda, S. Harada and H. Arakawa, "Efficient ruthenium sensitizer with a terpyridine ligand having a hexylthiophene unit for dye-sensitized solar cells: Effects of the substituent position on the solar cell performance" Eur. J. Inorg. Chem. 2014, 2014, 4734–4739.
[29] M. Akhtaruzzaman, A. Islam, M. R. Karim, A. K. M. Hasan and L. Han, "Improving the spectral response of black dye by cosensitization with a simple indoline based dye in dye-sensitized solar cell" J. Chem. 2013, 2013, 1–5.
[30] 劉毓琪,2018,國立中央大學化學研究所碩士學位論文(應用於染料敏化太陽能電池之釕金屬錯合物合成與性質探討)。
[31] 馮祐銘,2019,國立中央大學化學研究所碩士學位論文(新型三吡啶釕錯合物光敏化染料的合成與性質探討)。
[32] S. Hong, M. R. Rohman, J. Jia, Y. Kim, D. Moon, Y. Kim, Y. H. Ko, E. Lee and K. Kim, "Porphyrin boxes: Rationally designed porous organic cages" Angew. Chem. Int. Ed. 2015, 54, 13241–13244.
[33] M. Mondal, V. G. Puranik and N. P. Argade, "Facile synthesis of 1,3,7-trihydroxyxanthone and its regioselective coupling reactions with prenal: simple and efficient access to osajaxanthone and nigrolineaxanthone F" J. Org. Chem. 2006, 71, 4992–4995.
[34] J. Huang, S. Zhang, B. Jiang, Y. Chen, X. Zhang, Z. Fan, D. Yu, Z. Lin, J. Yao and C. Zhan, "Terminal moiety-driven electrical performance of asymmetric small-molecule-based organic solar cells" J. Mater. Chem. A 2016, 4, 15688–15697.
[35] T. I. Ryu, M. Song, M. J. Lee, S. H. Jin, S. Kang, J. Y. Lee, J. K. Lee, C. W. Lee and Y. S. Gao, "Synthesis and photovoltaic properties of novel ruthenium(II) sensitizers for dye-sensitized solar cell applications" Bull. Korean Chem. Soc. 2009, 30, 2329–2337.
[36] T. Hergert, B. Varga, A. Thurner, F. Faigl and B. Matravolgyi, "Copper-facillitated Suzuki-Miyaura coupling for the preparation of 1,3-dioxolane-protected 5-arylthiophene-2-carboxaldehydes" Tetrahedron 2018, 74, 2002–2008.
[37] Y. Jiang, C. Cabanetos, M. Allain, S. Jungsuttiwong and J. Roncali, "Manipulation of the electronic and photovoltaic properties of materials based on small push-pull molecules by substitution of the arylamine donor block by aliphatic groups" Org. Electron. 2016, 37, 294–304.
[38] R. Noto, L. Lamartina, C. Arnone and D. Spinelli, "An analysis of 13C nuclear magnetic resonance substiuent chemical shifts in 4- and 5-substituted thiophene-2-carboxylic acids by linear free energy relationships" J. Chem. Soc. Perkin. Trans. II 1988, 6, 887–892.
[39] R. Heathcote, J. A. S. Howell, N. Jennings, D. Cartlidge, L. Cobden, S. Coles and M. Hursthouse, "Gold(I)-isocyanide and gold(I)-carbene complexes as substrates for the laser decoration of gold onto ceramic surfaces" Dalton Trans. 2007, 13, 1309–1315.
[40] A. Bedi, S. P. Senanayak, K. S. Narayan and S. S. Zade, "Synthesis and characterization of copolymers based on cyclopenta[c]thiophene and bithiazole and their transistor properties" J. Polym. Sci. A Polym. Chem. 2013, 57, 4481–4488.
[41] S. H. Yang, K. L. Wu, Y. Chi, Y. M. Cheng and P. T. Chou, "Tris (thiocyanate) ruthenium (II) sensitizers with functionalized dicarboxy-terpyridine for dye-sensitized solar cells" Angew. Chem. Int. Ed. 2011, 50, 8270–8274.
[42] S. C. Rasmussen, S. J. Evenson and C. B. McCausland, "Fluorescent thiophene-based materials and their outlook for emissive applications" Chem. Commun. 2015, 51, 4528–4543.
[43] W. Zhu, Y. Wu, S. Wang, W. Li, X. Li, J. Chen, Z. Wang and H. Tian, "Organic D-A-π-A solar cell sensitizers with improved stability and spectral response" Adv. Funct. Mater. 2011, 21, 756–763.
[44] C. H. Chen, Y. C. Hsu, H. H. Chou, K. R. Thomas, J. T. Lin and C. P. Hsu, "Dipolar compounds containing fluorene and a heteroaromatic ring as the conjugating bridge for high-performance dye-sensitized solar cells" Chem. Eur. J. 2010, 16, 3184–3193.
[45] V. V. Pavlishchuk and A. W. Addison, "Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25 oC" Inorg. Chim. Acta. 2000, 298, 97–102.
[46] H. Ozawa, K. Fukushima. A. Urayama and H. Arakawa, "Efficient ruthenium sensitizer with an extended pi-conjugated terpyridine ligand for dye-sensitized solar cells" Inorg. Chem. 2015, 54, 8887–8889.
[47] C. Y. Chen, S. K. Ahn, D. Aoki, J. Kokubo, K. H. Yoon, H. Saito, K. S. Lee, S. Magaino, K. Takagi, L. C. Lin, K. M. Lee, C. G. Wu, H. Zhou and S. Igari, "International round-robin inter-comparison of dye-sensitized and crystalline silicon solar cells" J. Power Source 2017, 340, 309–318.
[48] H. Chang, M. J. Kao, T. L. Chen, C. H. Chen, K. C. Cho and X. R. Lai, "Characterization of natural dyes extracted from wormwood and purple cabbage for dye-sensitized solar cells" Int. J. Photoenergy 2013, 2013, 1–8.
[49] D. Kuang, P. Walter, F. Nuesch, S. Kim, J. Ko, P. Comte, S. M. Zakeeruddin, M. K. Nazeeruddin and M. Grätzel, "Co-sensitization of organic dyes for efficient ionic liquid elctrolyte-based dye-sensitized solar cells" Langmuir 2007, 23, 10906–10909.
指導教授 陳家原(Chia-Yuan Chen) 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明