博碩士論文 106223602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.235.173.74
姓名 哈琳達(Vety Sri Harlinda Ayudha)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Synthesis and Characterization of Cyclopentadithiophene (CDT) based Organic Photovoltaic and Pyrazine Contained Hole Transporting Small Molecules)
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積
★ 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程
★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構
★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究★ 半導體碘化鉛薄膜在單結晶銠電極上的研究
★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響
★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構
★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究★ 掃描式電子穿隧顯微鏡研究甲醇、甲醛、甲酸、一氧化碳分子和鉛原子在鉑(111)和鉑(100)上的吸附結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要分成有機光伏打電池電池 (OPV) 和電洞傳輸層 (HTL) 兩個部份的材料開發。在有機光伏打電池材料中,以 CDT 衍生物為核心,藉由knoevenagel 縮合反應在核心末端兩側接上拉電子基團 IN,得到新的 OPV 小分子 INCDT。在電洞傳輸層材料中,合成出三種以吡嗪為核心的小分子材料,在核心外側接上推電子基團三苯胺 (TPA),藉由 Stille 偶合反應得到三種新的電洞傳輸層小分子材料 DNB-2TPA、bDNB-4TPA 和 DNP-2TPA。利用 UV-Vis 和 DPV 來探討其光電和電化學的性質,並得到其 HOMO-LUMO 的能階差。藉由 DSC 和 熱重分析儀 (TGA) 來探討其熱穩定性性質。
摘要(英) A series of new organic optoelectronic materials were synthesized and characterized for organic photovoltaic (OPV) and hole transporting (HTL) small molecule application. For organic photovoltaic, one new core of CDT-based was developed. New CDT core was end-capped with electron-withdrawing groups, indane-1,3-dione(IN), via knovenagel condensation was done to afford new small molecule OPV INCDT. For hole transporting layer, three new small molecules based on pyrazine was synthesized. All of new hole transporting material was conjugated with an electron-donating group, triphenylamine (TPA), via Stille coupling to get DNB-2TPA, bDNB-4TPA, and DNP-2TPA. The optical and electrochemical (HOMO-LUMO) of these new materials were analyzed by UV-Vis and DPV. Thermal properties were characterized by DSC and TGA.
關鍵字(中) ★ 核心外側接上推電子基團
★ CDT 衍生物為核心
★ 光電和電化學的探討
★ 熱穩定性探討。
關鍵字(英)
論文目次 摘要 v
ABSTRACT vi
Acknowledgements vii
List of Figure xi
List of Table xvi
List of Scheme xvii
CHAPTER 1 INTRODUCTION 1
1.1. Background 1
1.2. Organic Solar Cell 1
1.2.1. Generation of Solar Cell 2
1.2.2. Device structure of OPV 3
1.2.3. Characteristic of Organic Photovoltaic 5
1.2.4. Working principle in OPV 6
1.2.5. Development of Organic Solar Cell 8
1.3. Perovskite Solar Cells 14
1.3.1. Device Structure of Perovskite Solar Cell 15
1.3.2. Working Principle of Perovskite Solar Cell 17
1.3.3. Hole transporting Layer for Perovskite Solar Cell 19
1.4. Experimental motivation 22
CHAPTER 2 SYNTHESIS OF NOVEL SMALL MOLECULE ORGANIC SOLAR CELL (OSC) BASED ON CYCLOPENTADITHIOPHENE (CDT) 23
2.1. Material and Methods 23
2.2. Synthesis and Characterization of Organic Photovoltaic 25
2.2.1. Synthesis Scheme Route 25
2.2.2. Synthesis methods 27
2.2.3. Characterization 36
2.3. Result and Discussion 37
2.3.1. Synthesis 37
2.3.2. Optical Properties 38
2.3.3. Electrochemical Properties 40
2.3.4. Thermal Properties 41
CHAPTER 3 SYNTHESIS OF NOVEL HOLE TRANSPORTING SMALL MOLECULE BASED ON PYRAZINE 43
3.1. Material and Methods 43
3.2. Synthesis and Characterization of Hole Transporting Materials 45
3.2.1. Synthesis Scheme Route 45
3.2.2. Synthesis methods 47
3.2.3. Characterization 50
3.3. Result and Discussion 51
3.3.1. Optical Properties 51
3.3.2. Electrochemical Properties 53
3.3.3. Thermal Properties 55
CHAPTER 4 CONCLUSION 58
REFERENCE 59
CHAPTER 5 APPENDIX 64
參考文獻 1. Katoria, D., Sehgal, D. & Kumar, S. Environment Impact Assessment of Coal Mining. Int. J. Environ. Eng. Manag. 4, 245–250 (2013).
2. Mamurekli, D. Environmental Impacts of Coal Mining and Coal Utilization in The UK. Acta Montan. Slovaca 15, 134–144 (2010).
3. Goswami, S. Impact of Coal Mining on Environment. Eur. Res. 92, 185–196 (2015).
4. Laney, A. S. & Weissman, D. N. Respiratory Diseases Caused by Coal Mine Dust. J. Occup. Environ. Med. 56, S18–S22 (2014).
5. Epstein, P. R. et al. Full Cost Accounting for The Life Cycle of Coal. Ann. N. Y. Acad. Sci. 1219, 73–98 (2011).
6. Wagner, H. Introduction to Wind Energy Systems. EPJ Web of Conferences, 148, 1–16 (2017).
7. Barros, M. T. L. et al. Optimization of Large-Scale Hydropower System Operations. Journal of Water Resource and Management, 178–188 (2003).
8. Alhamid, M. I., Daud, Y., Surachman, A. & Sugiyono, A. Potential of Geothermal Energy for Electricity Generation in Indonesia : A Review. Renew. Sustain. Energy Rev. 53, 733–740 (2020).
9. Jean, J., Brown, P. R., Jaffe, R. L., Buonassisi, T. & Bulović, V. Pathways for solar photovoltaics. Energy Environ. Sci. 8, 1200–1219 (2015).
10. Rwenyagila, E. R. Review Article A Review of Organic Photovoltaic Energy Source and Its. Int. J. Photoenergy 2017, 12 (2017).
11. Cook, A. G., Billman, L. & Adcock, R. Photovoltaic Fundamental. 1–68 (1995).
12. Luceño-Sánchez, J. A., Díez-Pascual, A. M. & Capilla, R. P. Materials for photovoltaics: State of art and recent developments. Int. J. Mol. Sci. 20, (2019).
13. Cao, W. & Xue, J. Recent Progress In Organic Photovoltaics: Device Architecture And Optical Design. Energy Environ. Sci. 7, 2123–2144 (2014).
14. Donor-acceptor, I. Internal Donor-Acceptor. Science (80-. ). 270, 1–3 (1995).
15. Hösel, M., Angmo, D. & Krebs, F. C. Organic solar cells (OSCs). Handbook of Organic Materials for Optical and (Opto)Electronic Devices: Properties and Applications. Woodhead Publishing, (2013).
16. Scharber, M. C. & Sariciftci, N. S. Progress In Polymer Science Efficiency Of Bulk-Heterojunction Organic Solar Cells. Prog. Polym. Sci. 38, 1929–1940 (2013).
17. Govindan, V. Synthesis of Organic Molecules for Solar Cell Applications. (2019).
18. Sakai, J., Taima, T., Yamanari, T. & Saito, K. Solar Energy Materials & Solar Cells Annealing Effect In The Sexithiophene : C 70 Small Molecule Bulk Heterojunction Organic Photovoltaic Cells. Solar Energy Material & Solar Cells, 93, 1149–1153 (2009).
19. Wang, Z. et al. Solution-Processable Small Molecules for High-Performance Organic Solar Cells with Rigidly Fluorinated 2 , 2 ′ -Bithiophene Central Cores. ACS Appl. Mater. Interfaces, 8, 11639-11648, (2016).
20. Yan, C. et al. Non-Fullerene Acceptors For Organic Solar Cells. Nat. Rev. Mater. 3, (2018).
21. Jiang, X., Xu, Y. Wang, X. Wu, Y., Feng., Li, C., Ma, W., Li, W. Non-Fullerene Organic Solar Cells Based On Diketopyrrolopyrrole Polymers As Electron Donors And ITIC As An Electron Acceptor. Phys. Chem. Chem. Phys, 19, 8069-8075, (2017).
22. Huo, Y. et al. Dual-Accepting-Unit Design of Donor Material for All-Small-Molecule Organic Solar Cells with Efficiency Approaching 11%. Chem. Mater. 30, 8661–8668 (2018).
23. Yang, L. et al. New Wide Band Gap Donor for Efficient Fullerene-Free All-Small- Molecule Organic Solar Cells. J. Am. Chem. Soc., 139, 5, 1958-1966, (2017).
24. Qu, J. et al. Alkyl Chain End Group Engineering of Small Molecule Acceptors for Non-Fullerene Organic Solar Cells. ACS Appl. Energy Mater. 1, 4724–4730 (2018).
25. Solares, C., Una, D. E. P. & Introducci, B. Perovskite Solar Cells : A Brief Introduction And Some Remarks. Rev. Cub. Fis.,34, 58, 58–68 (2017).
26. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic. J. Am. Chem. Soc. 131, 6050–6051 (2009).
27. Gao, X. P. A. Imaging the Long Transport Lengths of Photo-generated Carriers in Oriented Perovskite Films. (2016). Nano Lett. 16, 12, 7925-7929. (2016)
28. Snaith, H. J. Perovskites : The Emergence of a New Era for Low-Cost , High-Efficiency Solar Cells. J. Phys. Chem. Lett., 4, 21, 3623-3630 (2013).
29. Jena, A. K., Numata, Y., Ikegami, M. & Miyasaka, T. Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-Waste. J. Mater. Chem. A. 6, 2219–2230 (2018).
30. Wang, Y., Zhang, Y., Zhang, P. & Zhang, W. High Intrinsic Carrier Mobility And Photon Absorption In The Perovskite CH3NH3PbI3. Phys. Chem. Chem. Phys. 17, 11516–11520 (2015).
31. Song, T. et al. Perovskite solar cells: film formation and properties. J. Mater. Chem. A Mater. energy Sustain. 3, 9032–9050 (2015).
32. Yu, J. C. et al. Highly efficient and stable inverted perovskite solar cell employing PEDOT : GO composite layer as a hole transport layer. Sci. Rep. 3–11 (2018).
33. Liu, X. et al. A Simple Carbazole-Triphenylamine Hole Transport Material for Perovskite Solar Cells. J. Phys. Chem. C 122, 26337–26343 (2018).
34. Cui, B. et al. Propeller-Shaped, Triarylamine-Rich, and Dopant-Free Hole-Transporting Materials for Efficient n–i–p Perovskite Solar Cells. ACS Appl. Mater. Interfaces 10, 41592–41598 (2018).
35. Salunke, J. et al. Phenothiazine-Based Hole-Transporting Materials toward Eco- friendly Perovskite Solar Cells ̃. ACS Appl. Energy Mater. 2, 5, 3021-3027, (2019).
36. Pavia, et. al. Introduction to Spectroscopy. (Thomson Learning, 2001).
指導教授 姚學麟(Shueh-Lin Yau) 審核日期 2019-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明