博碩士論文 106225025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:35.172.111.71
姓名 王尹辰(Yin-Chen Wang)  查詢紙本館藏   畢業系所 統計研究所
論文名稱
(A general class of multivariate survival models derived from frailty and copula models: application to reliability theory)
相關論文
★ A control chart based on copula-based Markov time series models★ An improved nonparametric estimator of distribution function for bivariate competing risks model
★ Estimation and model selection for left-truncated and right-censored data: Application to power transformer lifetime modeling★ A robust change point estimator for binomial CUSUM control charts
★ Maximum likelihood estimation for double-truncation data under a special exponential family★ A class of generalized ridge estimator for high-dimensional linear regression
★ A copula-based parametric maximum likelihood estimation for dependently left-truncated data★ A class of Liu-type estimators based on ridge regression under multicollinearity with an application to mixture experiments
★ Dependence measures and competing risks models under the generalized Farlie-Gumbel-Morgenstern copula★ A review and comparison of continuity correction rules: the normal approximation to the binomial distribution
★ Likelihood inference on bivariate competing risks models under the Pareto distribution★ Parametric likelihood inference with censored survival data under the COM-Poisson cure models
★ Likelihood-based analysis of doubly-truncated data under the location-scale and AFT models★ Copula-based Markov chain model with binomial data
★ The Weibull joint frailty-copula model for meta-analysis with semi-competing risks data★ Performance of a two-sample test with Mann-Whitney statistics under dependent censoring with copula models
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Copula和frailty模型是在多個故障時間分佈之間建模依賴關係的兩個主要工具。 本文的目的是介紹一類多變量生存模型,其中包括copula模型和frailty模型作為兩種特例。 與僅容納其中一個的現有模型不同,我們所提出的模型既適用於frailty模型(描述異質性)也適用copula模型(描述相關性)。 我們推導出模型的性質,包括Kendall’s tau,
分位數(quantile)和一些其他有用的統計推斷度量。 作為可靠性理論的應用,我們透過工業實驗中壽命檢測(life tests)所產生的競爭風險資料(competing risks data)開發基於可能性的推理方法,其中單個元件的總壽命由多種類的故障方式決定。我們還開發了模型診斷程序。 我們進行模擬以檢查所提出方法的性能。最後包含分析一個真實的數據並進行說明。
摘要(英) Copulas and frailty models are two major tools for modeling dependence among multiple failure time distributions. The objective of this thesis is to introduce a general class of multivariate survival models that includes copula models and frailty models as special cases. The resultant model accommodates both frailty (for heterogeneity) and a copula (for dependence), unlike the existing models that accommodate only one of them. We derive properties of the models, including Kendall’s tau, quantile, and some other useful measures for statistical inference. As an application to reliability theory, we develop likelihood-based inference methods based on competing risks data arising from industrial life tests, where multiple types of failure determine the total lifespan of a unit. We also develop a model-diagnostic procedure and an accelerated failure time (AFT) model. We conduct simulations to examine the performance of the proposed methods. We analyze a real dataset for illustration.
關鍵字(中) ★ 競爭風險
★ Copula模型
★ 脆弱模型
★ 可靠度
★ 存活分析
★ 韋伯分布
關鍵字(英) ★ Competing Risk
★ Copula
★ Frailty
★ Reliability
★ Survival Analysis
★ Weibull distribution
論文目次 摘要 i
Abstract ii
致謝詞 iii
Chapter 1: Introduction 1
Chapter 2: Review 4
2.1 Review of copulas 4
2.2 Review of frailty model 7
Chapter 3: Frailty-copula model 9
3.1 Frailty-copula model 9
3.2 The frailty-Clayton model 12
Example 1 (The gamma-Clayton model): 12
Example 2 (The lognormal-Clayton model): 15
3.3 The frailty-Gumbel model 17
Example 3 (The gamma-Gumbel model): 18
Example 4 (The lognormal-Gumbel model): 21
Example 5 (The truncated-lognormal-Gumbel model): 24
Example 6 (The folded-normal-Gumbel model): 27
3.4 The frailty-FGM model: 30
Example 7 (The gamma- FGM model): 31
Chapter 4: Competing risks in reliability theory 35
4.1 Competing risks data 36
4.2 Proposed model 36
4.3 Properties of the proposed model 37
4.4 Likelihood-based inference 39
4.5 Goodness-of-fit 45
4.6 Simulations 46
4.7 Real data analysis 50
4.7.1 The ARC-1 VHF radio data 50
4.7.2 The results of data analysis 51
4.8 AFT model 54
4.9 Likelihood inference under the AFT model 56
4.10 Simulations of the AFT model 62
4.11 Link function 64
4.11.1 The gamma-Gumbel copula model (4-2) with the link 64
4.11.2 The gamma-Gumbel copula model (4-2) with the link 66
4.11.3 The AFT model with the link 67
4.11.4 The AFT model with the link 69
4.12 Simulations of the proposed model (4-2) with link functions 71
4.13 Simulations of the AFT model with link functions 72
參考文獻 Achim D, Emura T (2019), Analysis of Doubly Truncated Data, An Itroduction, JSS Research Series in Statistics, Springer, Singapore.
Belaghi RA, Asl MN (2016) Estimation based on progressively type-I hybrid censored data from the Burr XII distribution. Stat Pap doi: 10.1007/s00362-016-0849-5.
Burr IW (1942) Cumulative frequency functions. Ann Math Stat 13(2), 215-232.
Clayton DG (1978) A model for association in bivariate life tables and its application to epidemiological studies of familial tendency in chronic disease incidence. Biometrika. 65, 141-51
Crowder MJ (2012) Multivariate Survival Analysis and Competing Risks, CRC Press, New York.
David HA, Moeschberger ML (1978) The Theory of Competing Risks. London: Griffin.
Duchateau L, Janssen P (2008) The Frailty Model. Berlin: Springer.
Duchateau L, Janssen P, Lindsey P, Legrand C, Nguti R, Sylvester R (2002) The shared frailty model and the power for heterogeneity tests in multicenter trials. Comp Stat Data Anal, 40(3), 603-620.
Emura T, Chen YH (2016) Gene selection for survival data under dependent censoring, a copula-based approach, Stat Methods Med Res 25(6): 2840-57.
Emura T, Michimae H (2017) A copula-based inference to piecewise exponential models under dependent censoring, with application to time to metamorphosis of salamander larvae, Environ Ecol Stat 24(1) 151–73.
Emura T, Nakatochi M, Murotani K, Rondeau V (2017) A joint frailty-copula model between tumour progression and death for meta-analysis, Stat Methods Med Res 26: 2649-66.
Emura T, Nakatochi M, Matsui S, Michimae H, Rondeau V (2018) Personalized dynamic prediction of death according to tumour progression and high-dimensional genetic factors: meta-analysis with a joint model, Stat Methods Med Res 27(9):2842-58
Emura T, Matsui S, Rondeau V (2019a) Survival Analysis with Correlated Endpoints, Joint Frailty-Copula Models, Springer, Singapore.
Emura T, Pan CH (2017), Parametric maximum likelihood inference and goodness-of-fit tests for dependently left-truncated data, a copula-based approach, Stat Pap, doi:10.1007/s00362-017-0947-z
Emura T, Shih JH, Ha ID, Wilke R (2019b) Comparison between the marginal hazard models and sub-distribution hazard models for competing risks data, in revision.
Emura T, Wang H (2010) Approximate tolerance limits under the log-location-scale models in the presence of censoring, Technometrics 52(3): 313-23
Escarela G, Carriere JF (2003) Fitting competing risks with an assumed copula. Stat Methods Med Res 12: 333-349.
Fan TH, Wang YF, Ju SK (2019). A competing risks model with multiply censored reliability data under multivariate Weibull distributions. IEEE Transactions on Reliability doi: 10.1109/TR.2019.2907518.
Gumbel EJ (1960) Distributions de valeurs extremes en plusieurs dimensions. PubL Inst Statist. Parids 9: 171-173.
He Z, Emura T (2019), Likelihood inference under the COM-Poisson cure model for survival data - computational aspects, J Chinese Stat Assoc 57: 1-42.
Hougaard P (1984) Life Table Methods for Heterogeneous Populations: Distributions Describing the Heterogeneity. Biometrika 71:75-83.
Kayid M, Noughabi, MS, Abouammoh AM (2019). A nonparametric estimator of bivariate quantile residual life model with application to tumor recurrence data set. Journal of Classification, 1-17.
Kotz S, Balakrishnan N, Johnson NL (2000) Continuous Multivariate Distributions, Volume 1: Models and Applications, Wiley, New York.
Leone FC, Nelson LS, Nottingham RB (1961) The Folded Normal Distribution. Technometrics 3(4),543-550.
Lim JY, Jeong JH (2017) Cause-specific quantile residual life regression. Stat Methods Med Res, 26(4), 1912-1924.
Liu X (2012) Planning of accelerated life tests with dependent failure modes based on a gamma frailty model. Technometrics 54(4), 398-409.
Lo SM, Stephan G, Wilke RA (2017) Competing risks copula models for unemployment duration: An application to a German Hartz reform. Journal of Econometric Methods 6(1):1-20.
Lu JC, Bhattacharyya GK (1990) Some new constructions of bivariate weibull models. Annals of the Institute of Statistical Mathematics 42:543–559.
MacDonald LL (2014) Does Newton-Raphson really fail? Stat Methods Med Res 23(3):308-311.
Mendenhall W, Hader RJ (1958) Estimation of parameters of mixed exponential distributed failure time distribution from censored life test data. Biometrika 45, 504-520.
Noughabi MS, Kayid M (2017). Bivariate quantile residual life: a characterization theorem and statistical properties. Stat Pap DOI:10.1007/s00362-017-0905-9.
Oakes D (1989). Bivariate Survival Models Induced by Frailties. JASA 84:487-493.
Peng M, Xiang L, Wang S (2018) Semiparametric regression analysis of clustered survival data with semi-competing risks, Comp Stat Data Anal 124: 53-70.
Rotolo T, Legrand C, Van Keilegom I (2013) A simulation procedure based on copulas to generate clustered multi-state survival data. Comput Methods Programs Biomed 109(3): 305-312.
Shih JH, Emura T (2016) Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula. Stat Pap. doi: 10.1007/s00362-016-0865-5.
Shih JH, Emura T (2018) Likelihood-based inference for bivariate latent failure time models with competing risks under the generalized FGM copula, Comput Stat 33(3): 1293-23.
Shih JH, Lee W, Sun LH, Emura T (2018) Fitting competing risks data to bivariate Pareto models, Commun Stat-Theor 48(5), 1193-1220.
Watkins AJ (1999) An algorithm for maximum likelihood estimation in the three parameter Burr XII distribution. Comp Stat Data Anal 32(1), 19-27.
Zhang C, Pan L, Wang S, Wang X (2018) An accelerated life test model for solid lubricated bearings used in space based on time-varying dependence analysis of different failure modes. Acta Astronautica 152:352-359.
Zheng M, Klein JP (1995) Estimates of marginal survival for dependent competing risks based on an assumed copula. Biometrika 82(1), 127-138.
Zhou Y, Lu Z, Shi Y, Cheng K (2018) The copula-based method for statistical analysis of step-stress accelerated life test with dependent competing failure modes. Proc. Inst. Mech. Eng, Part O: Journal of Risk and Reliability 1748006X18793251.
Zimmer WJ, Keats JB, Wang FK (1998) The Burr XII Distribution in Reliability Analysis Journal of Quality Technology 30(4):386-394.
指導教授 江村剛志(Takeshi Emura) 審核日期 2019-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明