博碩士論文 106225601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.230.154.160
姓名 黃昕蔚(Xinwei Huang)  查詢紙本館藏   畢業系所 統計研究所
論文名稱
(Likelihood-based inference for copula-based Markov chain models for continuous, discrete, and survival data)
相關論文
★ A control chart based on copula-based Markov time series models★ An improved nonparametric estimator of distribution function for bivariate competing risks model
★ Estimation and model selection for left-truncated and right-censored data: Application to power transformer lifetime modeling★ A robust change point estimator for binomial CUSUM control charts
★ Maximum likelihood estimation for double-truncation data under a special exponential family★ A class of generalized ridge estimator for high-dimensional linear regression
★ A copula-based parametric maximum likelihood estimation for dependently left-truncated data★ A class of Liu-type estimators based on ridge regression under multicollinearity with an application to mixture experiments
★ Dependence measures and competing risks models under the generalized Farlie-Gumbel-Morgenstern copula★ A review and comparison of continuity correction rules: the normal approximation to the binomial distribution
★ Likelihood inference on bivariate competing risks models under the Pareto distribution★ Parametric likelihood inference with censored survival data under the COM-Poisson cure models
★ Likelihood-based analysis of doubly-truncated data under the location-scale and AFT models★ Copula-based Markov chain model with binomial data
★ The Weibull joint frailty-copula model for meta-analysis with semi-competing risks data★ A general class of multivariate survival models derived from frailty and copula models: application to reliability theory
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 利用耦合對序列相依關係建模在過往文獻中已被廣泛地探討了。然而,鮮少針對基於耦合的馬可夫鏈模型進行診斷的討論。此外,由於複雜的設限機制,基於耦合的馬可夫鏈模型對序列相依的存活數據建模也是一個難題。本文在連續型數據、離散型數據和存活數據,此三種數據形態下,以概似函數為基礎對基於耦合的馬可夫鏈模型進行擬合。對連續型和離散型數據,我們提出適合度檢定以及利用概似函數選擇模型的模型診斷策略。而針對存活數據,我們則建構了一個全新的基於耦合的馬可夫鏈模型,用於對序列相依的重複觀測事件進行建模。模型中的相依設限也被耦合所考慮。兩種耦合的存在使概似函數極為複雜,故此,我們採用兩階段估計方法。基於估計函數理論,漸近變異數可以被理論證明。對此,我們提出摺刀法作為漸近變異數的一致估計量,從而進行區間估計。對三種類型數據的生成與建模,我們都提供了便於使用的R語言函數。所有提出的方法都經過了模擬驗證,並且利用五筆真實數據(化學數據、財務數據、棒球數據、股市數據和存活數據)進行分析與說明。
摘要(英) Copula modeling for serial dependence has been extensively discussed in the literature. However, model diagnostic methods in copula-based Markov chain models are rarely discussed in the literature. Also, copula-based Markov modeling for serially dependent survival data is challenging due to the complex censoring mechanisms. The thesis studies likelihood-based model fitting methods under copula-based Markov chain models on three types of data structures, continuous, discrete and survival data. For continuous and discrete data, we propose model diagnostic procedures, including a goodness-of-fit test and a likelihood-based model selection method. For survival data, we propose a novel copula-based Markov chain model for modeling serial dependence in recurrent event times. We also use a copula for modeling dependent censoring. Due to the complex likelihood function with the two copulas, we adopt a two-stage estimation method for fitting the survival data, whose asymptotic variance is derived by the theory of estimating functions. We propose a jackknife method for interval estimates, which is shown to be consistent for the asymptotic variance. We develop user-friendly R functions for simulating the data and fitting the models for continuous, discrete, and survival data. We conduct simulation studies to see the performance of all the proposed methods. For illustration, we analyze five datasets (chemical data, financial data, baseball data, stock market data, and survival data).
關鍵字(中) ★ 耦合
★ 馬可夫鏈
★ 序列相依
★ 統計製程控制
★ 適合度檢定
★ 存活分析
★ 重複觀測事件
★ 相依設限
★ 兩階段估計
★ 摺刀法
關鍵字(英) ★ copulas
★ Markov chain
★ serial dependence
★ statistical process control
★ goodness-of-fit
★ survival analysis
★ recurrent event
★ dependent censoring
★ two-stage estimation
★ jackknife
論文目次 Chapter 1 Introduction 1
Chapter 2 Copula models 3
2.1 Copulas 3
2.2 Copula-based Markov chain 6
2.3 Discrete margins 8
2.4 Survival copula 9
Chapter 3 Continuous data 11
3.1 Continuous data in SPC 11
3.2 Copula-based Markov chain model 12
3.3 Likelihood 13
3.4 Asymptotic properties 15
3.5 Goodness-of-fit 17
3.6 Model selection 19
3.7 Software 20
3.8 Data analysis 22
Chapter 4 Attribute data 29
4.1 Attribute data in SPC 29
4.2 Copula-based Markov chain model 30
4.3 Maximum likelihood estimation 31
4.4 Asymptotic properties 33
4.5 Goodness-of-fit 34
4.6 Model selection 36
4.7 Software 37
4.8 Data analysis 39
Chapter 5 Survival data 42
5.1 Recurrent event data 42
5.2 Model and likelihood 45
5.3 Clayton copula and Weibull model 47
5.4 Two-Stage maximum likelihood method 48
5.5 Asymptotic properties 49
5.6 Computation 51
5.7 Simulation 51
5.8 Software 57
5.9 Data analysis 59
Chapter 6 Conclusion 65
Appendix A 68
Appendix B 69
Appendix C 77
References 85
參考文獻 Achim, D., and Emura, T. (2019). Analysis of Doubly Truncated Data. An Introduction: Springer Singapore.
Albers, W., and Kallenberg, W. C. (2007). Shewhart control charts in new perspective. Sequential Analysis, 26(2), 123-151.
Assareh, H., Smith, I., and Mengersen, K. (2015). Change point detection in risk adjusted control charts. Statistical Methods in Medical Research, 24(6), 747-768.
Billingsley, P. (1961). Statistical Methods in Markov Chains. The Annals of Mathematical Statistics, 32(1), 12-40.
Bisgaard, S., and Kulahci, M. (2007). Quality quandaries: Using a time series model for process adjustment and control. Quality Engineering, 20(1), 134-141.
Box, G., and Narasimhan, S. (2010). Rethinking statistics for quality control. Quality Engineering, 22(2), 60-72.
Box, G. E. P., and Jenkins, G. (1990). Time Series Analysis, Forecasting and Control: Holden-Day, Inc.
Chen, X., and Fan, Y. (2006). Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification. Journal of Econometrics, 135(1-2), 125-154.
Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65(1), 141-151.
Darsow, W. F., Nguyen, B., and Olsen, E. T. (1992). Copulas and Markov processes. Illinois Journal of Mathematics, 36(4), 600-642.
Domma, F., Giordano, S., and Perri, P. F. (2009). Statistical modeling of temporal dependence in financial data via a copula function. Communications in Statistics-Simulation and Computation, 38(4), 703-728.
Durante, F., and Sempi, C. (2015). Principles of copula theory: Chapman and Hall/CRC.
Emura, T., and Chen, Y.-H. (2016). Gene selection for survival data under dependent censoring: a copula-based approach. Statistical Methods in Medical Research, 25(6), 2840-2857.
Emura, T., and Ho, Y. T. (2016). A decision theoretic approach to change point estimation for binomial CUSUM control charts. Sequential Analysis, 35(2), 238-253.
Emura, T., and Konno, Y. (2012). A goodness-of-fit test for parametric models based on dependently truncated data. Computational Statistics & Data Analysis, 56(7), 2237-2250.
Emura, T., Long, T.-H., and Sun, L.-H. (2017a). R routines for performing estimation and statistical process control under copula-based time series models. Communications in Statistics-Simulation and Computation, 46(4), 3067-3087.
Emura, T., Matsui, S., and Chen, H.-Y. (2019a). compound. Cox: univariate feature selection and compound covariate for predicting survival. Computer Methods and Programs in Biomedicine, 168, 21-37.
Emura, T., Matsui, S., and Rondeau, V. (2019b). Survival Analysis with Correlated Endpoints Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer, Singapore.
Emura, T., Nakatochi, M., Murotani, K., and Rondeau, V. (2017b). A joint frailty-copula model between tumour progression and death for meta-analysis. Statistical Methods in Medical Research, 26(6), 2649-2666.
Emura, T., and Pan, C.-H. (2017). Parametric likelihood inference and goodness-of-fit for dependently left-truncated data, a copula-based approach. Statistical Papers.
Faugeras, O. (2017). Inference for copula modeling of discrete data: a cautionary tale and some facts. In Dependence Modeling (Vol. 5, pp. 121).
Genest, C., and MacKay, R. J. (1986). Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données. Canadian Journal of Statistics, 14(2), 145-159.
Genest, C., and Nešlehová, J. G. (2007). A Primer on Copulas for Count Data. ASTIN Bulletin, 37(2), 475-515.
Genest, C., and Rémillard, B. (2008). Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. In Annales de l′IHP Probabilités et statistiques (Vol. 44, No. 6, pp. 1096-1127).
Genest, C., Nešlehová, J. G., and Rémillard, B. (2017). Asymptotic behavior of the empirical multilinear copula process under broad conditions. Journal of Multivariate Analysis, 159, 82-110.
González, J. R., Fernandez, E., Moreno, V., Ribes, J., Peris, M., Navarro, M., . . . Borràs, J. M. (2005). Sex differences in hospital readmission among colorectal cancer patients. Journal of Epidemiology & Community Health, 59(6), 506-511.
He, Z., and Emura, T. (2019). Likelihood inference under the COM-Poisson cure model for survival data - computational aspects. Journal of Chinese Statistics Association(57), 1-42.
Henze, N. (1996). Empirical-distribution-function goodness-of-fit tests for discrete models. Canadian Journal of Statistics, 24(1), 81-93.
Huang, X.-W., and Emura, T. (2019). Model diagnostic procedures for copula-based Markov chain models for statistical process control. Communications in Statistics-Simulation and Computation, doi:10.1080/03610918.2019.1602647.
Huang, X.-W., Chen, W.-R., and Emura, T. (2019). A control chart using a copula-based Markov chain for attribute data. Econnometrics and Statistics, in revision.
Joe, H. (1993). Parametric families of multivariate distributions with given margins. Journal of Multivariate Analysis, 46(2), 262-282.
Joe, H. (1997). Multivariate Models and Multivariate Dependence Concepts: Chapman and Hall/CRC.
Joe, H. (2005). Asymptotic efficiency of the two-stage estimation method for copula-based models. Journal of Multivariate Analysis, 94(2), 401-419.
Joe, H. (2014). Dependence modeling with copulas. Chapman and Hall/CRC.
Kendall, M. G. (1948). Rank correlation methods. Oxford, England: Griffin.
Khuri, A. I. (2003). Advanced Calculus with Applications in Statistics: Wiley.
Kim, J.-M., and Baik, J. (2018). Anomaly detection in sensor data. Journal of Appllied Reliability, 18(1), 20-32.
Kim, J.-M., Baik, J., and Reller, M. (2018). Detecting the Change of Variance by Using Conditional Distribution with Diverse Copula Functions. Paper presented at the Proceedings of the Pacific Rim Statistical Conference for Production Engineering.
Kim, J.-M., Baik, J., and Reller, M. (2019). Control charts of mean and variance using copula Markov SPC and conditional distribution by copula. Communications in Statistics-Simulation and Computation, doi:10.1080/03610918.2018.1547404.
Knoth, S., and Schmid, W. (2004). Control charts for time series: a review. In Frontiers in Statistical Quality Control 7 (pp. 210-236): Springer.
Kojadinovic, I. (2017). Some copula inference procedures adapted to the presence of ties. Computational Statistics & Data Analysis, 112, 24-41.
Lawless, J. F., and Yilmaz, Y. E. (2011). Semiparametric estimation in copula models for bivariate sequential survival times. Biometrical Journal, 53(5), 779-796.
Li, Z., Chinchilli, V. M., and Wang, M. (2019). A Bayesian joint model of recurrent events and a terminal event. Biometrical Journal, 61(1), 187-202.
Long, T.-H., and Emura, T. (2014). A control chart using copula-based Markov chain models. Journal of the Chinese Statistical Association, 52(4), 466-496.
MacDonald, I. L. (2014). Does Newton–Raphson really fail? Statistical Methods in Medical Research, 23(3), 308-311.
Meyer, R., and Romeo, J. S. (2015). Bayesian semiparametric analysis of recurrent failure time data using copulas. Biometrical Journal, 57(6), 982-1001.
Montgomery, D. C. (2009). Statistical Quality Control (Vol. 7): Wiley New York.
Nelsen, R. B. (2007). An Introduction to Copulas: Springer Science & Business Media.
Perry, M. B., Pignatiello Jr, J. J., and Simpson, J. R. (2007). Estimating the change point of the process fraction non‐conforming with a monotonic change disturbance in spc. Quality and Reliability Engineering International, 23(3), 327-339.
Rotolo, F., Legrand, C., and Van Keilegom, I. (2013). A simulation procedure based on copulas to generate clustered multi-state survival data. Computer Methods and Programs in Biomedicine, 109(3), 305-312.
Rotolo, F., Paoletti, X., and Michiels, S. (2018). surrosurv: An R package for the evaluation of failure time surrogate endpoints in individual patient data meta-analyses of randomized clinical trials. Computer Methods and Programs in Biomedicine, 155, 189-198.
Shih, J.-H., and Emura, T. (2018). Likelihood-based inference for bivariate latent failure time models with competing risks under the generalized FGM copula. Computational Statistics, 33(3), 1293-1323. doi:10.1007/s00180-018-0804-0
Sklar, M. (1959). Fonctions de repartition an dimensions et leurs marges. Publications de l′Institut de Statistique de l′Université de Paris, 8, 229-231.
Sonmez, O. E., and Baray, A. (2019). On Copula Based Serial Dependence in Statistical Process Control. In Industrial Engineering in the Big Data Era (pp. 127-136): Springer.
Sun, L.-H., Lee, C.-S., and Emura, T. (2018). A Bayesian inference for time series via copula-based Markov chain models. Communications in Statistics-Simulation and Computation, 1-17.
Lin, W.-C., Emura T, Sun, L.-H. (2019) Estimation under copula-based Markov mixture normal models for serially correlated data, Communications in Statistics-Simulation and Computation, in revision.
Wang, K., Yau, K. K., Lee, A. H., and McLachlan, G. J. (2007). Multilevel survival modelling of recurrent urinary tract infections. Computer Methods and Programs in Biomedicine, 87(3), 225-229.
Weiß, C. H., and Kim, H.-Y. (2013). Parameter estimation for binomial AR (1) models with applications in finance and industry. Statistical Papers, 54(3), 563-590.
Wieringa, J. E. (1999). Statistical Process Control for Serially Correlated Data: Labyrint Publication.
指導教授 江村剛志(Takeshi Emura) 審核日期 2019-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明