博碩士論文 106226011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.15.147.53
姓名 劉佶隴(CHI-LUNG LIU)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 射頻磁控濺鍍矽基鍺薄膜及光偵測器光電特性分析
(Germanium Thin Film on Silicon and the Characterization of Photodetectors)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-10-15以後開放)
摘要(中) 摘要
本研究以射頻磁控濺鍍法在矽基板上成長鍺薄膜,並應用其製作光偵測器。鍺的能隙比矽還小,因此其吸收截止波長可達1550 nm以上,而且具有較高載子遷移率,而濺鍍法優勢在於無需使用有毒易爆炸之氣體以及低成本製程,利用濺鍍法成長鍺薄膜及探討薄膜品質,並應用於光偵測器,將收光範圍延伸至近紅外光區。
藉由調變濺鍍功率、正偏壓、氫氣流量,已於600°C時成長500 nm單晶鍺薄膜。於700°C退火後,鍺薄膜(400) XRD搖擺曲線之半高寬從2672 arcsec 降至2180 arcsec,且減少了其壓縮應力。此外加入硼顆粒共濺鍍退火後,可以得到摻雜濃度4.32×1019 cm-3及載子遷移率63.6 cm2/V-s之硼摻雜鍺薄膜。
700°C快速熱退火一分鐘之鍺薄膜光偵測器暗電流密度在-1V時約1.5 mA/cm2,其直徑180μm元件之850 nm波段光響應,在-1 V時為0.1 A/W,在-3 V時為0.2 A/W,在-3 V的1310 nm和1550 nm波段時分別為0.18 mA/W和0.14 mA/W。

摘要(英) Abstract
A germanium thin film was grown on a silicon substrate by RF magnetron sputtering to fabricate a near infrared photodetector .Because of the energy gap of germanium is smaller than silicon, its cut-off absorption wavelength can reach NIR up to 1550 nm, and it has high carrier mobility. The advantage of sputtering method is that it is not necessary to use toxic and explosive gas and also a low-cost process. In this research, the sputtering method was applied to grow the film, the thin film quality, and deposit it to fabricate the photodetector to extend the wavelength range to the near-infrared region.
A 500-nm single crystal germanium film has been grown at 600 ° C by adjusting the sputtering power, bias voltage, and hydrogen flow rate. After annealed to 700 °C, the full-width- half-maximum of the XRD rocking curve of the germanium film (400) decreased from 2672 arcsec to 2180 arcsec. Its compressive stress was reduced. In addition, the boron-doped germanium thin film with doping concentration of 4.32×1019 cm-3 and carrier mobility of 63.6 cm2/V-s was obtained by using co-sputtering boron particles and annealing process.
After 700 °C rapid thermal annealing, the dark current density of the NIR photodetector is about 1.5 mA/cm2 at -1V, and the optical response of the 850- nm band of the 180-μm diameter device is 0.1 A/W at -1 V. It is 0.2 A/W at -3V and 0.18 mA/W and 0.14 mA/W at -3 V for 1310 nm and 1550 nm, respectively.
關鍵字(中) ★ 鍺
★ 薄膜
★ 光偵測器
關鍵字(英) ★ Germanium
★ Thin Film
★ Photodetectors
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的與方法 3
第二章 基本原理及文獻回顧 4
2-1 鍺薄膜成長機制 4
2-2 鍺薄膜磊晶於矽基板技術 6
2-3 鍺薄膜磊晶於矽基板之方法 7
2-4 P-I-N結構光偵測器工作原理 9
2-5 矽基鍺光偵測器 11
第三章 實驗設備及分析儀器 12
3-1 實驗步驟 12
3-1-1以RF磁控濺鍍製備鍺薄膜與量測 12
3-1-2 P-I-N矽基鍺薄膜光偵測器製備 13
3-2 製程設備 16
3-2-1沉積設備 16
3-2-2 蝕刻機台 17
3-2-3 曝光機台 17
3-2-4 其他 17
3-3 量測機台 19
• 拉曼光譜儀(Raman Spectrometer) 19
• X光繞射分析儀(X-ray diffraction,XRD) 19
• 霍爾量測儀(Hall Measurement) 20
• 掃描式電子顯微鏡(SEM) 22
• 原子力顯微鏡(Atomic Force Microscope,AFM) 22
• 高解析度掃描穿透是式電子顯微鏡(Transmission electron microscope,TEM) 23
• 電流-電壓特性曲線量測 (I-V Characteristics curve) 23
第四章 薄膜及光電元件製備之結果討論 24
4-1 矽基鍺薄膜製備量測 24
4-1-1調變濺鍍功率影響 24
4-1-2調變正偏壓之影響 30
4-1-3 加入氫氣之影響 34
4-1-4 本質鍺退火 40
4-1-5 加入硼顆粒之影響 45
4-2元件量測 51
4-2-1暗電流之不同尺寸元件比較 51
4-2-2光電流之不同尺寸元件比較 54
第五章 結論與未來展望 57
5-1 結論 57
5-2 未來展望 57
參考文獻 58
參考文獻 參考文獻
[1]李揚漢, 「光纖通訊網路」, 光通訊系統教學推動中心,2006
[2]吳順正, 「光纖特性與應用」,全華科技出版社,台北市,1987
[3]陳舜鴻, 「運用雷射雷達(LiDAR)感測功能提升智慧汽車效能」,車輛中 心/研究發展處,取自https://www.artc.org.tw/upfiles/ADUpload/knowledge/tw_knowledge_530086904.pdf
[4]林志平, 「應用於自駕車的光達(Lidar)」,科技報導,43期,11月號,4-13,2017
[5] S. O. Kasap, “Optoelectronics and Photonics-Principles and Practices, 2/e”, GL高立,新北市,2015
[6] 取自https://en.wikipedia.org/wiki/Multi-junction_solar_cell
[7] Hsin-Chiao Luan, et al , “High-quality Ge epilayers on Si with low threading-dislocation densities”, Applied Physics Letters, 75,19, 2909-2911,1999.
[8] Tarık Asar, et al “Barrier enhancement of Ge MSM IR photodetector with Ge layer optimization”, Superlattices and Microstructures ,88, 685-694 ,2015.
[9] Hai-Yun Xue, et al, “High-Saturation-Power and High-Speed Ge-on-SOI p-i-n Photodetectors”, IEEE ELECTRON device letters, 31, 7, 701 -703, 2010.
[10] Jurgen Michel, et al, “High-performance Ge-on-Si photodetectors”,Nature Photonics, 527-534,2010.
[11] D. J. Eaglesham and M. Cerullo, “Dislocation-Free Stranski-Krastanow Growth of Ge on Si(100)”, Physical Review Letters, 64, 16, 1943 -1946,1990.
[12] 取自維基百科https://zh.wikipedia.org/wiki/%E6%96%AF%E7%89%B9%E5%85%B0%E6%96%AF%E5%9F%BA%EF%BC%8D%E5%85%8B%E6%8B%89%E6%96%AF%E5%9D%A6%E8%AF%BA%E5%A4%AB%E7%94%9F%E9%95%BF
[13] L. B. Freund, “Thin Film Materials: Stress, Defect Formation and Surface Evolution”, Cambridge University Press, 2009.
[14]李敬鋒, 「新能源材料及其應用技術:鋰離子電池,太陽能電池和溫差電池」, 清華大學出版社, 2005.
[15] S. Dey, et al, “Pure germanium epitaxial growth on thin strained silicon-germanium graded layers on bulk silicon substrate for high-mobility channel metal-oxide-semiconductor field-effect transistors”, Journal of Electronic Materials, 35, 8, 1607–1612, 2006.
[16] Zhihong Huang, et al, “21-GHz-Bandwidth Germanium-on-Silicon Photodiode Using Thin SiGe Buffer Layers”, IEEE Journal of Selected Topics in Quantum Electronics , 12, 6, 1450 -1454, 2006.
[17] L. Colace, et al, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates”, applied physics letters, volume 76, number 10 , 2000 .
[18] Naoki Higashitarumizu1 and Yasuhiko Ishikawa, “Enhanced direct-gap light emission from Si-capped n+-Ge epitaxial layers on Si after post-growth rapid cyclic annealing: impact of non-radiative interface recombination toward Ge/Si double heterostructure lasers”, Optics Express, 25, 18 , 21286,2017.
[19] J. Mantey, et al, “Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer”, Applied Physics Letters, 102, 19, 192111,2013 .
[20] J.-S. Park, et al, “Defect reduction of selective Ge epitaxy in trenches on Si(001) substrates using aspect ratio trapping”, Applied Physics Letters, 90, 5, 052113 ,2007
[21] D. Pawlik , et al, “Alloyed junction Ge Esaki diodes on Si substrates realised by aspect ratio trapping technique”, Electronics Letters , 44, 15,930-932, 2008 .
[22] R. Ichikawa, et al, “Germanium as a Material to Enable Silicon Photonics ”, Silicon Photonics II , Topics in Applied Physics ,131-141,2011.
[23] Yuji Yamamoto, et al, “Low threading dislocation density Ge deposited on Si (1 0 0) using RPCVD”, Solid-State Electronics, 60, 1, 2-6,2011.
[24] Shawn G. Thomas, et al, “Structural characterization of thick, high-quality epitaxial Ge on Si substrates grown by low-energy plasma-enhanced chemical vapor deposition”, Journal of Electronic Materials, 32, 9, 976–980, 2003.
[25] C. G. Littlejohns, et al, “Ge-on-Si Plasma-Enhanced Chemical Vapor Deposition for Low-Cost Photodetectors”, IEEE Photonics Journal, 7,1-8, 2015.
[26] Wei-Cheng Kuo, et al, “Strain-Controlled of Compressive/Tensile Ge Epilayers on Si by Electron Cyclotron Resonance Chemical Vapor Deposition”, ECS Journal of Solid State Science and Technology, 5,9, 529-533 ,2016.
[27] J. L. Liu, et al, “High-quality Ge films on Si substrates using Sb surfactant-mediated graded SiGe buffers”, APPLIED PHYSICS LETTERS, 79, 21, 3431 -3433,2001
[28] Vito Sorianello, et al, “Low-temperature germanium thin films on silicon”, Optical Materials Express, 1, 5, 856 ,2011.
[29] Takahiro Tsukamoto, et al, “Control of surface flatness of Ge layers directly grown on Si (001) substrates by DC sputter epitaxy method”, Thin Solid Films, 592, Part A, 34-38, 2015.
[30] Dongwoo Suh, et al, “36-GHz High-Responsivity Ge Photodetectors Grown by RPCVD”, IEEE Photonics Technology Letters, 21, 10, 672 -674,2009.
[31] Yasuhiko Ishikawa, et al, “Germanium for silicon photonics”, Thin Solid Films, 518, 6, S83-S87, 2010.
[32] J. Osmond, et al, “Ultralow dark current Ge/Si(100) photodiodes with low thermal budget”, Applied Physics Letters, 94,20, 201106 ,2009.
[33] Hilal Cansizoglu,et al, “Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm”, Photonics Research, 6, 7, 734, 2018.
[34] P.R. Bandaru, et al, “Fabrication and characterization of low temperature (<450 ◦C) grown p-Ge/n-Si photodetectors for silicon based photonics”, Materials Science and Engineering, 113, 1, 79–84, 2004.
[35] Po-Han Huang , et al, “Ge Photodetector Monolithically Integrated on Si by Rapid-Melting-Growth Technique”, IEEE Photonics Technology Letters, 27, 12, 1254 -1256 ,2015.
[36]取自https://en.wikipedia.org/wiki/Raman_spectroscopy
[37]林麗娟,「X光繞射原理及其應用」,工業材料,86,100-109,2000
[38]取自中興大學http://ezphysics.nchu.edu.tw/prophys/basicexp/expnote/hall/hall_97Feb.pdf
[39]取自http://www.pelttech.com/item_10_221_0.shtml
[40] Miao Zhong , “Epitaxy”, chapter2, Pages47- 65, BoD ,2018.
[41] Douglas D. Cannon ,et al, “Tensile strained epitaxial Ge films on Si(100) substrates with potential application in L band telecommunications”, Applied Physics Letters, 84,6, 906 -908 ,2004.
[42]吳哲賢, 「偏壓式磁控濺鍍法製作矽異質接面太陽能電池之研究」,國立中央大學,碩士論文,民國103年
[43]周凌毅, 「反應式濺鍍過渡態矽薄膜之研究」,國立中央大學,碩士論文,民國98年
[44]廖上瑩,「反應式直流脈衝磁控濺鍍法製備氮化鎵薄膜」,國立中央大學,碩士論文,民國108年
[45]李正中,「薄膜光學與鍍膜技術」,藝軒,2016
[46]陳冠翔,「在矽基板上成長單晶鍺薄膜與矽鍺薄膜之研究」,國立中央大學,碩士論文,民國103年
[47]石邱毅,「磁控濺鍍法製作高品質多晶砷化鎵薄膜之研究」,國立中央大學,碩士論文,民國106年
[48] Zhihong Huang, et al, “Low-temperature growth of polycrystalline Ge thin film on glass by in situ deposition and ex situ solid-phase crystallization for photovoltaic applications”, Applied Surface Science , 255, 15, 7028-7035 , 2009.
[49] 毛亦群,「以濺鍍法製作p-type單晶鍺薄膜於太陽能電池應用」,國立中央大學,碩士論文,民國104年
[50] Shintaro Otsuka, et al, “Structural and electrical characterization of epitaxial Ge thin films on Si(001) formed by sputtering”, Japanese Journal of Applied Physics, 56,4S, 04CB01,2017.
[51] C. Masini, et al, “High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration”, IEEE Transactions on Electron Devices , 48 , 6 , 1092 – 1096,2001 .
指導教授 張正陽 陳昇暉(Jeng-yang Chang Sheng-Hui Chen) 審核日期 2019-10-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明