博碩士論文 106226019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.204.48.199
姓名 黃濟棠(Chi-Tang Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 電控及光控膽固醇液晶光閥特性與結構之研究
(Studies of the structures and characteristics of optically and electrically switchable liquid crystal light shutters)
相關論文
★ 利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究★ 液晶摻雜十二氫氧基硬酯酸於鍍有聚乙烯基咔唑薄膜液晶盒中之多穩態特性及其應用
★ 利用偶氮苯摻雜膽固醇液晶製作光控線性偏振旋轉器★ 利用扭轉型聚合物網絡液晶製作 偏振選擇性光散射之研究
★ 中孔洞奈米粒子摻雜液晶之光電特性及其應用之研究★ 藍相液晶摻雜旋性聚合物之表面穩定效應之研究
★ 層列C型/層列C*型液晶摻雜偶氮苯材料之光電特性研究★ 離子性材料對向列型液晶自發性配向及其應用之研究
★ 膽固醇液晶摻雜離子性層列型液晶之動態散射特性研究★ 膽固醇液晶及扭轉向列型液晶之線性偏振旋轉器
★ 低操作電壓高分子分散型液晶及其應用之研究★ 單面及雙面旋性聚合物穩固藍相液晶之光電特性
★ 利用液晶相位空間光調制器實現波長及焦距可調之反射式Fresnel光學透鏡★ 光控及電控散射型/吸收型液晶光閥之研究
★ 利用雙扭轉向列型液晶製作可電光調控之線性偏振光液晶光圈★ 非對稱式液晶光電元件及其應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-1以後開放)
摘要(中) 本論文的研究主要分為兩個部份,第一部份主要探討電控膽固醇液晶光閥之各種狀態與其對應之切換特性,其中藉由量測此光閥之電壓-穿透度曲線及透過偏光顯微鏡下的結構觀察,由此確立各狀態出現之電壓區間,此外,透過偏光顯微鏡所觀測的光學紋理圖,推論各狀態出現之原因及液晶分子排列方式,之後根據以上基礎,再由時間-穿透度曲線探究各狀態之切換過程。透過前述之研究成果,我們提出此電控膽固醇液晶光閥之五種結構,包含捲曲狀手紋結構、格狀手紋結構、多域狀手紋結構、電場引致手紋結構及垂直結構,將於第五章做完整之論述,且此五種結構之相互切換機制也由前述之時間-穿透度曲線確立。另外,本論文所架構之電控膽固醇液晶光閥存在三種穩態結構,且各狀態之穿透及散射程度也不盡相同,而透過此一光電特性,在本論文第六章亦提出將之應用於擴增實境之可能性。
本論文的第二部份為光控膽固醇液晶光閥之研究,其中此部份之研究重點為探討聚合物網絡結構對於此光閥系統之相關影響,而此膽固醇液晶光閥透過摻雜於系統中之偶氮苯材料進行光致異構化反應及光致熱效應,以達到穿透度切換之效果,其中此光閥利用膽固醇液晶之焦錐態及各向同性態達到散射及穿透態間之切換;而針對偶氮苯材料對系統產生之效應,此部份將以溫控系統控制光閥之環境溫度,而在此條件下便可排除光致熱效應的影響,以單獨討論光致異構化反應對光閥系統帶來之影響,而後移除溫控系統,便可看出光致熱效應與光致異構化反應對光閥系統之影響程度。由於此光閥具有隨外在環境主動調節穿透度之能力,因此依據其光學特性,故於本論文第六章便提出將其應用於智慧窗戶之可能性,及其他未來可繼續研究之方向。
摘要(英) The research topics in this thesis include the following two sections. In the first section, the liquid crystal (LC) textures existing in the electrically controllable cholesteric LC (CLC) light shutter and the corresponding switching mechanism are discussed in detail. According to the measurements of transmittance versus applied voltage curves, and the images obtained by a polarized optical microscopy, the applied voltage range of each texture was elucidated. Furthermore, the switching mechanism was also proposed based on the obtained transmittance versus time curves. In addition, the detailed discussions described in Chapter 5 include the five kinds of LC textures, they are spiral-like fingerprint textures, grid-like fingerprint textures, multi-domain like fingerprint textures, field-induced fingerprint textures, and homeotropic textures. Moreover, the CLC light shutter mentioned in this thesis has three kinds of stable states, and the capabilities of transmission and scattering of each state are different. By using the mentioned opto-electronic characteristics, the proposed CLC light shutter has great potential for the application of the augmented reality (AR), which has also discussed in Chapter 6.
The second section of the thesis is the study of optically controllable CLC light shutter. This study focuses on the influences of light shutter architecture resulted from the adopted polymer networks. The proposed CLC light shutter can be switched between transparent and scattering states under the illumination of UV lights. The switching mechanism of the CLC light shutter is based on the photo-isomerization effect and the photo-induced thermal effect of the doped push-pull azobenzene molecules. Owing to the above-mentioned effects, the scattering and transparent states of the CLC light shutter are successfully achieved by the focal conic textures and the isotropic state, respectively. In order to discuss the photo-isomerization effect individually, the temperature controller was utilized to maintain the ambient temperature and to remove the influence resulted by the photo-induced thermal effect on the CLC light shutter. The influences of photo-isomerization and photo-induced thermal effect of the light shutter can be observed simultaneously, resulted from the absence of the temperature controller. The proposed CLC light shutter has the capability to adjust transmittance automatically through the environmental variation, the possibility of applications of smart windows and future works according to its optical characteristics are also proposed in Chapter 6.
關鍵字(中) ★ 液晶
★ 液晶光閥
★ 擴增實境
★ 聚合物網絡
★ 智慧窗戶
關鍵字(英) ★ liquid crystal
★ liquid crystal light shutter
★ augmented reality
★ polymer network
★ smart window
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xiii
符號說明 xiv
第一章 緒論 1
§1-1 前言 1
§1-2 研究動機 1
§1-3 論文架構 2
第二章 液晶簡介 4
§2-1 液晶的定義 4
§2-1-1 液晶的起源 4
§2-1-2 物質分類 5
§2-2 液晶分類[3][9] 5
§2-2-1 向列型液晶(Nematics) 6
§2-2-2 層列型液晶(Smectics) 8
§2-2-3 膽固醇液晶(Cholesterics,簡寫N*) 11
§2-3 液晶物理 14
§2-3-1 光學異向性(Optical anisotropy)[5] 15
§2-3-2 介電異向性(Dielectric anisotropy)[5] 23
§2-3-3 連續彈性體理論(Continuum theory)[4][6][8] 25
§2-3-4 Fréedericksz transition[4][8] 26
第三章 實驗理論 28
§3-1 散射原理 28
§3-1-1 瑞利散射理論(Rayleigh scattering theory)[12] 28
§3-1-2 瑞利-甘斯散射理論(Rayleigh-Gans scattering theory)[10][12] 33
§3-2 膽固醇液晶之相關原理 39
§3-2-1 影響膽固醇液晶螺距的相關因素 39
§3-2-2 膽固醇液晶的結構切換原理[14][19] 42
§3-2-3 膽固醇液晶之手紋態結構介紹[14][15] 45
§3-3 二色性染料(Dichroic dye) 48
§3-4 賓主效應(Guest-Host effect) 49
§3-5 聚合物穩固膽固醇液晶結構(Polymer-stabilized cholesteric texture)[10] 50
§3-5-1 一般模式聚合物穩固膽固醇液晶光閥 50
§3-5-2 反向模式聚合物穩固膽固醇液晶光閥 51
§3-6 偶氮苯材料之反應與應用 52
§3-6-1 光致異構化反應(Photoisomerization)[19] 52
§3-6-2 偶氮苯材料之應用 53
§3-7 相關文獻回顧 54
第四章 實驗方法與製程 58
§4-1 材料介紹 58
§4-1-1 雙頻液晶HEF951800-100 58
§4-1-2 二色性染料S-428 (購自MITSUI FINE CHEMICALS, INC.) 59
§4-1-3 手性分子CB15 (購自FUSOL MATERIAL CO., LTD) 59
§4-1-4 手性分子S811 (購自FUSOL MATERIAL CO., LTD) 60
§4-1-5 液晶聚合物RM257 60
§4-1-6 偶氮苯材料HABA (購自Sigma-Aldrich) 61
§4-1-7 垂直配向材料DMOAP 62
§4-2 實驗樣品製作 63
§4-2-1 材料配置 63
§4-2-2 ITO基板裁切及清洗過程 63
§4-2-3 基板表面之配向處理 64
§4-2-4 液晶盒製作過程 64
§4-2-5 液晶盒厚度量測 65
§4-3 樣品觀測與實驗架設 67
§4-3-1 樣品觀測 67
§4-3-2 實驗架設 67
第五章 實驗結果與討論 70
§5-1 電控摻雜二色性染料之膽固醇液晶光閥 70
§5-1-1 電控膽固醇液晶光閥之相態介紹 70
§5-1-2 不同相態間的切換差異比較 78
§5-1-3 比較不同相態下的散射與吸收 88
§5-1-4 比較不同相態下之實際操作展示圖 90
§5-2 光控摻雜偶氮苯材料之膽固醇液晶光閥 91
§5-2-1 偶氮苯材料之順/反式光致異構化反應對相變點的影響 91
§5-2-2 聚合物單體的聚合條件討論 94
§5-2-3 聚合物網絡結構對反應速率之影響 96
§5-2-4 不同強度紫外光對光閥穿透度之影響 103
§5-2-5 於偏光顯微鏡下觀察聚合物網絡對膽固醇液晶光閥之影響 104
§5-2-6 第二類膽固醇液晶光閥之實際操作展示圖 105
第六章 結論與未來展望 106
§6-1 結論 106
§6-1-1 電控摻雜二色性染料之膽固醇液晶光閥 106
§6-1-2 光控摻雜偶氮苯材料之膽固醇液晶光閥 109
§6-2 未來展望 111
§6-2-1 電控摻雜二色性染料之膽固醇液晶光閥 111
§6-2-2 光控摻雜偶氮苯材料之膽固醇液晶光閥 113
參考文獻 114
參考文獻 [1] F. Reinitzer, “Beiträge zur Kenntniss des Cholesterins,” Monatsh. Chem, 9, 421-441 (1888).
[2] D. Dunmur and T. Sluckin, “Soap, Science, and Flat-screen TVs: a history of liquid crystals,” Oxford University Press, USA (2011).
[3] D. Andrienko, “Introduction to liquid crystals,” J. Mol. Liq. 267, 520–541 (2018).
[4] P. G. de. Gennes and J. Prost, “The Physics of Liquid Crystal,” 2nd ed., Oxford University Press, New York (1993).
[5] A.Yariv and P. Yeh, “Optical Waves in Crystals,” John Wiley & Sons, Inc., New York (1983).
[6] P. Yeh and C. Gu, “Optics of Liquid Crystal Displays,” John Wiley & Sons, Inc., New York (1999).
[7] H.-S. Kitzerow and C. Bahr, “Chirality in Liquid Crystals,” Springer, New York (2001).
[8] G. Vertogen, “Elastic Constants and the Continuum Theory of Liquid Crystals,” Physica 117A, 227-231 (1983).
[9] P. J. Collings and M. Hird, “Introduction to Liquid Crystals: Chemistry and Physics,” CRC Press, London (1997).
[10] D.‐K. Yang and S.‐T. Wu, “Fundamentals of Liquid Crystal Devices,” John Wiley & Sons (2014).
[11] R. J. A. Tough and M. J. Bradshaw, “The determination of the order parameters of nematic liquid crystals by mean field extrapolation,” Journal de Physique 44, 447-454 (1983).
[12] D. J. Griffiths, “Introduction to Electrodynamics,” Pearson (2017).
[13] L. M. Blinov and V. G. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials,” Springer, New York (1994).
[14] A. Ryabchun and A. Bobrovsky, “Cholesteric Liquid Crystal Materials for Tunable Diffractive Optics,” Adv. Optical Mater. 6, 1800335 (2018).
[15] A. Y.-G. Fuh, C.-H. Lin, and C.-Y. Huang, “Dynamic Pattern Formation and Beam-Steering Characteristics of Cholesteric Gratings,” Jpn. J. Appl. Phys. 41, 211-218 (2002).
[16] I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 4, 3499-3508 (2012).
[17] G. Carbone, D. Corbett, S. J. Elston, P. Raynes, A. Jesacher, R. Simmonds, and M. Booth, “Uniform Lying Helix Alignment on Periodic Surface Relief Structure Generated via Laser Scanning Lithography,” Mol. Cryst. Liq. Cryst. 544, 1025-1037 (2011).
[18] G. H. Heilmeier and L. A. Zanoni, “Guest-Host Interactions in Nematic Liquid Crystals. A New Electro-Optic Effect,” Appl. Phys. Lett. 13, 91-92 (1968).
[19] 李伯逸,利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究(國立中央大學光電科學與工程學系 2016).
[20] B. I. Senyuk, I. I. Smalyukh, and O. D. Lavrentovich, “Switchable two-dimensional gratings based on field-induced layer undulations in cholesteric liquid crystals,” Opt. Lett. 30, 349-351 (2005).
[21] D. L. White and G. N. Taylor, “New absorptive mode reflective liquid-crystal display device,” J. Appl. Phys. 45, 4718-4723 (1974).
[22] S.-W. Oh, J.-M. Baek, and T.-H. Yoon, “Sunlight-switchable light shutter fabricated using liquid crystals doped with push-pull azobenzene,” Opt. Express 24, 26575-26582 (2016).
[23] Y.-D. Chen, A. Y.-G. Fuh, and K.-T. Cheng, “Optically and thermally controllable light scattering based on dye-doped liquid crystals in poly(N-vinylcarbazole) films-coated liquid crystal cell,” Opt. Express 20, 26252-26260 (2012).
[24] S. D’Elia, V. Barna, N. Scaramuzza, G. Strangi, and R. Bartolino, “The influence of drying temperature on the close packed structure of silanized monolayers deposited on indium tin oxide (ITO) substrates,” J. Mater. Res. 24, 2784-2794 (2009).
[25] W. Helfrich, “Deformation of Cholesteric Liquid Crystals with Low Threshold Voltage,” Appl. Phys. Lett. 17, 531-532 (1970).
[26] J.-H. Huh, “Electrohydrodynamic Instability in Cholesteric Liquid Crystals in the Presence of a Magnetic Field,” Mol. Cryst. Liq. Cryst. 477, 67-76 (2007).
[27] Y.-C. Hsiao and W. Lee, “Polymer stabilization of electrohydrodynamic instability in non-iridescent cholesteric thin films,” Opt. Express 23, 22636-22642 (2015).
[28] W.-F. Cheng, J.-C. Lai, S. T.-F. Jie, C.-K. Liu, and K.-T. Cheng, “Scattering-/aborption-mode light shutters based on dye-doped fingerprint chiral textures,” Dyes and Pigments 163, 78-85 (2019).
指導教授 鄭恪亭(Ko-Ting Cheng) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明