博碩士論文 106226024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:18.224.63.87
姓名 林煒紘(Wei-Hong Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 超強耦合高分子發光二極體之研究
(Study of polymer light-emitting diode operating in the ultrastrong coupling regime)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-14以後開放)
摘要(中) 本論文主要研究在共振激發機制下的電致發光偏極子元件,我們以高分子材料MDMO-PPV同時作為激子庫與光子源,透過共振腔式倒置型高分子發光二極體的設計,實現高分子材料的激子能量與共振腔光子模態的強耦合作用,並使電激發的光源直接激發偏極子能態發光,與一般元件相比,可以減少偏極子散射的損耗,提升元件發光效率。
在加入電子傳輸層ZnO優化元件後,實驗得到元件的外部量子效率約為0.14 %,偏極子集中於下支低角度發光,拉比分裂能量為600 meV,耦合因子有22.9 %,屬於超強耦合的範疇。而在強弱耦合元件發光效率的比較下,推測ZnO鍍在不同膜面上的電子注入效果不同,並以單載子元件的實驗證明。
摘要(英) In this thesis, the electrically pumped polariton device operating in the resonant pumping regime was studied. We used polymer material MDMO-PPV as both exciton reservoir and photon source. Via design of microcavity inverted polymer light-emitting diode, strong coupling between exciton energy of polymer material and photon mode of microcavity was achieved. And the electrically excited light source can directly pump the polariton energy state to emit light. In contrast to general device, it can reduce the loss of polariton scattering and improve the luminescence efficiency.
After adding electron transport layer ZnO for optimizing the device, the experiment have shown that external quantum efficiency is 0.14% and light-emitting polaritons gather in the lower branch at low angle. Rabi splitting energy is 600 meV which corresponds to a coupling factor = 22.9 %. It reach the ultrastrong coupling regime. Comparing the luminescence efficiency of strong coupling device with weak coupling device, we guess that the electron injection capability of ZnO deposited on the different film are different and prove by experimental result of electron-only device.
關鍵字(中) ★ 偏極子
★ 強耦合
★ 超強耦合
關鍵字(英) ★ Polariton
★ Strong coupling
★ Ultrastrong coupling
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 ix
第一章 緒論 1
1-1 高分子發光二極體 1
1-2 偏極子(Polariton) 2
1-3 偏極子元件 2
1-4 研究動機 8
第二章 基本原理 9
2-1 激子 9
2-2 微共振腔中的光子模態 10
2-3 強耦合理論 12
2-4 瓶頸效應與共振激發 16
2-5 薄膜光學理論 20
2-5-1 折射率與消光係數 20
2-5-2 單介面之反射與透射 21
2-5-3 單層膜之反射與透射 23
2-5-4 電場分布 26
2-6 有機發光二極體之工作原理 27
2-6-1 有機發光二極體的結構 27
2-6-2 注入限制電流(Injection-Limited Current) 28
2-6-3 空間電荷限制電流(SCL Current) 29
2-6-4 外部量子效率 30
第三章 實驗方式與步驟 31
3-1 實驗材料 31
3-2 實驗步驟 32
3-2-1 元件結構 32
3-2-2 基板清洗 33
3-2-3 元件製程 33
3-3 實驗儀器 34
3-3-1 熱蒸鍍系統 34
3-3-2 手套箱 36
3-3-3 旋轉塗佈機 36
3-3-4 半導體參數分析儀與光電二極體 37
3-3-5 光纖量測系統 39
3-3-6 紫外/可見/紅外光光譜儀 40
3-3-7 積分球光譜儀(Integrating Sphere) 41
3-3-8 即時多角度光譜量測系統 42
3-3-9 原子層沉積系統 46
第四章 實驗結果與分析 47
4-1 自激發強耦合層材料MDMO-PPV 47
4-2 退火溫度對OLED元件的影響 49
4-3 強耦合共振腔元件設計與模擬 50
4-4 實驗結果與分析 53
4-4-1 正向型強耦合共振腔 53
4-4-2 倒置型強耦合共振腔 54
4-4-3 實驗分析 64
第五章 結論與未來展望 67
參考文獻 68
參考文獻 [1] J. H. Burroughes et al., Light-emitting diodes based on conjugated polymers. Nature 347, 539-541 (1990).
[2] D. R. Baigent et al., Conjugated polymer light-emitting diodes on silicon substrates. Appl. Phys. Lett. 65, 2636 (1994).
[3] K. Morii et al., Encapsulation-free hybrid organic-inorganic light-emitting diodes, Appl. Phys. Lett. 89, 183510 (2006).
[4] H. J. Bolink et al., Air stable hybrid organic-inorganic light emitting diodes using ZnO as the cathode, Appl. Phys. Lett. 91, 223501 (2007).
[5] Young‐Hoon Kim et al., Polyethylene Imine as an Ideal Interlayer for Highly Efficient Inverted Polymer Light‐Emitting Diodes, Adv. Funct. Mater. 24, 3808-3814 (2014).
[6] J. Kasprzak et al., Bose–Einstein condensation of exciton polaritons, Nature 443, 409-414 (2006).
[7] H. Deng, H. Haug, Y. Yamamoto, Exciton-polariton Bose-Einstein condensation. Reviews of Modern Physics 82, 1489-1537 (2010).
[8] C. Weisbuch et al., Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett. 69, 3314 (1992).
[9] D. G. Lidzey et al., Strong exciton–photon coupling in an organic semiconductor microcavity, Nature 395, 53 (1998).
[10] D.G. Lidzey et al., Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities, Phys. Rev. Lett. 82, 3316 (1999).
[11] S. Kéna-Cohen, S. R. Forrest, Room-temperature polariton lasing in an organic single-crystal microcavity, Nature Photonics 4, 371-375 (2010).
[12] G. M. Akselrod et al., Lasing through a strongly-coupled mode by intra-cavity pumping, Optics Express 21, 12122-12128 (2013).
[13] D. Comoretto, Organic and hybrid photonic crystals, Springer, Switzerland (2015).
[14] J. R. Tischler et al., Strong Coupling in a Microcavity LED, Phys. Rev. Lett. 95, 03640 (2005).
[15] N. Christogiannis et al., Characterizing the Electroluminescence Emission from a Strongly Coupled Organic Semiconductor Microcavity LED, Adv. Opt. Mater. 1, 503 (2013).
[16] A. Genco et al., Bright Polariton Coumarin-Based OLEDs Operating in the Ultrastrong Coupling Regime, Adv. Opt. Mater. 6, 1800364 (2018).
[17] A. F. Kockum et al., Ultrastrong coupling between light and matter, Nature Reviews Physics 1, 19-40 (2019).
[18] N. Takada, T. Kamata, and D. D. C. Bradley, Polariton emission from polysilane-based organic microcavities, Appl. Phys. Lett. 82, 1812 (2003).
[19] J. D. Plumhof et al., Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer, Nature Materials 13, 247–252 (2014).
[20] M. Wei et al., Low-threshold polariton lasing in a highly disordered conjugated polymer, Optica 6, 1124-1129 (2019).
[21] M. Fox, Optical Properties of Solids, OXFORD University Press, United Kingdom, (2008).
[22] R. J. Holmes, S.R. Forrest, Strong exciton–photon coupling in organic materials, Organic Electronics 8, 77-93 (2007).
[23] M. Fox, Quantum Optics: An Introduction, OXFORD University Press, United Kingdom, (2006).
[24] J. R. Tischler et al., Solid state cavity QED: Strong coupling in organic thin films, Organic Electronics 8, 94-113 (2007).
[25] P. Michetti and G. C. La Rocca, Polariton-polariton scattering in organic microcavities at high excitation densities, Phys. Rev. B 82, 115327 (2010).
[26] D. Coles et al., Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities, Phys. Rev. B 88, 121303 (2013).
[27] T. Virgili et al., Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity, Phys. Rev. B 83, 245309 (2011).
[28] J. Chovan et al., Controlling the interactions between polaritons and molecular vibrations in strongly coupled organic semiconductor microcavities, Phys. Rev. B 78, 045320 (2008).
[29] D. Coles et al., Vibrationally Assisted Polariton‐Relaxation Processes in Strongly Coupled Organic‐Semiconductor Microcavities, Adv. Funct. Mater. 21, 3691–3696 (2011).
[30] N. Somaschi et al., Phonon-driven Resonantly-Enhanced Polariton Luminescence in Organic Microcavities, Proc. of SPIE 8260, 82600Q (2012).
[31] M. S. Bradley and V. Bulović, Intracavity optical pumping of J-aggregate microcavity exciton polaritons, Phys. Rev. B 82, 033305 (2010).
[32] G. H. Lodden and R. J. Holmes, Electrical excitation of microcavity polaritons by radiative pumping from a weakly coupled organic semiconductor, Phys. Rev. B 82, 125317 (2010).
[33] R. T. Grant et al., Efficient Radiative Pumping of Polaritons in a Strongly Coupled Microcavity by a Fluorescent Molecular Dye, Adv. Optical Mater. 4, 1615–1623 (2016).
[34] D. Ballarini et al., Polariton‐Induced Enhanced Emission from an Organic Dye under the Strong Coupling Regime, Adv. Optical Mater. 2, 1076–1081 (2014).
[35] G. M. Akselrod et al., Exciton-exciton annihilation in organic polariton microcavities, Phys. Rev. B 82, 113106 (2010).
[36] M. S. Vezie et al., Exploring the origin of high optical absorption in conjugated polymers, Nature Materials 15, 746–753 (2016).
[37] M. Held et al., Ultrastrong Coupling of Electrically Pumped Near‐Infrared Exciton‐Polaritons in High Mobility Polymers, Adv. Optical Mater. 6, 1700962 (2018).
[38] P. A. Hobson and W. L. Barnes, Strong exciton–photon coupling in a low-Q all-metal mirror microcavity, Appl. Phys. Lett. 81, 3519 (2002).
[39] 李正中,薄膜光學與鍍膜技術,第八版,新北市,藝軒圖書出版社,民國107年。
[40] S. Hayashi, Y. Ishigaki, and M. Fujii, Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities, Phys. Rev. B 86, 045408 (2012).
[41] 陳金鑫,黃孝文,夢幻顯示器:OLED材料與元件,台北市,五南出版社,民國96年。
[42] J. G. Simmons, Richardson-Schottky Effect in Solids, Phys. Rev. Lett. 15, 967 (1965).
[43] R. H. Fowler and L. Nordheim, Electron emission in intense electric fields, Proc. R. Soc. Lond. A 119, 173 (1928).
[44] A. J. Heeger, I. D. Parker, Y. Yang, Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling, Synthetic Metals 67, 23-29 (1994).
[45] S. R. Forrest, D. D. C. Bradley, M. E. Thompson, Measuring the Efficiency of Organic Light‐Emitting Devices, Advanced Materials 15, 1043 (2003).
[46] 陳頤,「即時性多角度光譜儀系統之校正與應用」,國立中央大學,碩士論文,民國一零八年。
[47] 林東俞,「螢光材料應用於電激發有機偏極子元件之研究」,國立中央大學,碩士論文,民國一零八年。
[48] 丘耀斌,「聚合物共混層發光二極體應用於電激發偏極子元件之研究」,國立中央大學,碩士論文,民國一零八年。
[49] L. Tropf et al., Influence of optical material properties on strong coupling in organic semiconductor based microcavities, Appl. Phys. Lett. 110, 153302 (2017).
[50] Y. Shi, J. Liu, and Y. Yang, Device performance and polymer morphology in polymer light emitting diodes: The control of thin film morphology and device quantum efficiency, Journal of Applied Physics 87, 4254 (2000).
[51] L. Qain et al., Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages, Nano Today 5, 384-389 (2010).
[52] M. Lu et al., Hole-enhanced electron injection from ZnO in inverted polymer light-emitting diodes, Organic Electronics 13, 1693-1699 (2012).
[53] B. R. Lee et al., Highly efficient inverted polymer light-emitting diodes using surface modifications of ZnO layer, Nature Communications 5, 4840 (2014).
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2020-1-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明