博碩士論文 106226027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:35.175.113.29
姓名 陳詣欽(Yi-Qin Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 動態干涉儀應用於量測活體微生物之光學常數
(Measuring the optical constant of living microorganisms by a Linnik-type dynamic interferometer)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 石墨烯透明導電膜與其成長模型之研究★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究
★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率
★ 化學氣相沉積石墨烯透明導電膜之製程與分析★ 應用光學導納軌跡法提升太陽能選擇性吸收膜之光熱轉換效率研究
★ 單晶銅成長石墨烯及其可撓性之研究★ 高反射多層膜抗雷射損傷閥值之研究
★ 高穿透類鑽碳膜之研究★ 透鏡品質檢測基於四波橫向剪切干涉儀
★ 製備超親水聚合膜在聚碳酸酯表面研究★ 利用真空噴塗系統製備UV固化膜之研究
★ 即時性多角度光譜儀系統 之校正與應用★ 以表面活化官能基增進塑膠基板附著性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-16以後開放)
摘要(中) 近幾年來隨著癌症的發生人數不斷攀升,不少人投入研究癌細胞與正常細胞之間有何不同之處,其差異之處在於:細胞形狀、細胞核大小等,為了在不破壞樣品前提下,又能清楚分辨細胞核位置,因此利用細胞核與細胞質之間的折射率差異定位細胞核位置。目前檢測全場生物折射率的儀器大多為掃描式干涉儀,但此種干涉儀在檢測中易受環境干擾,需要一段時間才能求得折射率,因此本論文將提出解決環境干擾與快速求得折射率之方法。
本實驗中以Linnik-type偏振式干涉儀結合4D Technology公司出產的攝影機當作實驗架構,有效降低環境的干擾,即使在光學桌不充氣的情況下,也能有效量測活體微生物。為了測試本實驗架構的可行性,首先檢測光學薄膜進行確認,其厚度誤差為0.03%,標準差為0.74nm,折射率誤差為0.24%,標準差為0.0032。
微生物公認的細胞質折射率範圍在1.35至1.37之間,本實驗檢測出的微生物細胞質折射率在其範圍內。而為了達到即時檢測折射率的變化,本實驗亦利用演算法取得微生物的厚度,計算出其相位調制級數並輸入程式,即可即時算出整體活體微生物的折射率及厚度,達到即時動態量測效果。
摘要(英) In recent years, due to the number of people who are ill with cancer grow up, many people have studied the difference between cancer cells and normal cells. The differences between cancer cells and normal cells include cell shape, cell size, etc. In avoid to damaging the sample and the position of the nucleus can be clearly distinguished, the position of the nucleus is located by the difference in refractive index between the nucleus and the cytoplasm. At present, most of the instruments for detecting the whole field refractive index are scanning interferometers, and they are susceptible to environmental interference during the detection. It takes a while to obtain the refractive index. This paper will propose a method to solve the environmental interference and quickly obtain the refractive index.
In this experiment, the Linnik-type polarization interferometer combined with the camera produced by 4D Technology Company is used as the experimental framework to effectively reduce the environmental interference, and the biological measurement can be effectively measured even when the optical table is not inflated. In order to test the feasibility of the experimental instrument, the optical film was first to be analyzed. The thickness error was 0.03%, the standard deviation was 0.74 nm, the refractive index error was 0.24%, and the standard deviation was 0.0032.
The recognized cytoplasmic refractive index ranges from 1.35 to 1.37, and the microbial cytoplasmic refractive index detected in this experiment is within its range. In order to achieve the instantaneous detection of the change of refractive index, this experiment uses the algorithm to obtain the thickness of the microorganism, and calculates the phase modulation level. By inputting the phase modulation series into the program, the refractive index and thickness of the whole living microorganism can be calculated instantly.
關鍵字(中) ★ 動態干涉儀
★ 活體微生物檢測
關鍵字(英) ★ Linnik-type dynamic interferometer
★ microorganism measurement
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
1-3 本文架構 4
第二章 基礎理論 5
2-1 干涉理論 5
2-2 Jones calculus理論 10
2-3 演算法理論 14
第三章 實驗架設與研究方法 17
3-1 實驗架構 17
3-2 實驗步驟 21
3-3 輔助儀器 23
3-3-1 可見光近紅外光光譜儀 23
3-3-2 表面輪廓測定儀(α-step) 23
3-3-3 橢圓偏光儀(Ellipsometry) 24
3-4 薄膜研究方法 25
3-4-1 量測反射率光譜方法 25
3-4-2 量測反射相位光譜方法 26
3-5 生物研究方法 29
第四章 實驗結果與討論 31
4-1 動態干涉儀校正 31
4-2 動態干涉儀規格 35
4-3 量測結果 38
第五章:結論 44
參考文獻 45
參考文獻 [1] Robert Hooke, Micrographia, or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon, London, 1665.
[2] M. D. G. Rizzoni, M. D. F. Braggion, M. D. G. Zacchello, ‘‘Evaluation of glomerular and nonglomerular by phase-contrast microscopy’’, The Journal of Pediatrics, Vol 103, pp. 370-374, September 1983.
[3] D. L. Taylor, Y. L. Wang, ‘‘Fluorescence microscopy of living cells in culture Part B.:Quantitative fluorescence microscopy’’, Methods in cell biology, Vol 30, 1989.
[4] Q. Zhang, L. Zhong, P. Tang, Y. Yuan, S. Liu, J. Tian, and X. Lu, ‘‘Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging’’, Scientific Reports, Vol 7, 2017.
[5] P. Y. Liu, L. K. Chin, W. Ser, H. F. Chen, C. M. Hsieh, C. H. Lee, K. B. Sung, T. C. Ayi, P. H. Yap, B. Liedberg, K. Wang, T. Bourouina, and Y. Leprince-Wang, ‘‘Cell refractive index for cell biology and disease diagnosis: past, present and future’’, Lab Chip, Vol 16, pp. 634-644, 2016.
[6] B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, ‘‘Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy’’, Optics Express, Vol 13, pp. 9361-9373, 2005.
[7] P. Girshovitz and N. T. Shaked, ‘‘Generalized cell morphological parameters based on interferometric phase microscopy and their application to cell life cycle characterization’’, Biomedical Optics Express, Vol 3, pp. 1757-1773, 2012.
[8] G. G. Levin, G. N. Vishnyakov, V. L. Minaev, M. I. Latushko, V. V. Pickalov, V. K. Belyakov, E. P. Sukhenko, and A. V. Demyanenko, ‘‘Shearing interference microscopy for tomography of living cells’’, Proc. of SPIE-OSA, Vol 9536, 2015.
[9] T. Yamauchi, H. Iwai, M. Miwa, and Y. Yamashita, ‘‘Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology’’, Optics Express, Vol 16, pp. 12227-12238, 2008.
[10] Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, ‘‘Optical diffraction tomography for high resolution live cell imaging’’, Optics Express, Vol 17, pp. 266-277, 2009.
[11] J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, ‘‘Pixelated Phase-Mask Dynamic Interferometer’’, Proc. SPIE, Vol 5531, doi:10.1117/12.560807, 2004.
[12] D. Malacara, Optical Shop Testing, Third Edition, Wiley-Interscience A John Wiley & Sons, Inc., 2007.
[13] P. S. Theocaris, E. E. Gdoutos, ‘‘Matrix Theory of Photoelasticity’’, Springer, 1979.
[14] 張耀仁, 「C++程式設計」, 初版,碁峰資訊出版社, ISBN986-421-475-6,臺北市,2004。
[15] 林育賢,「動態干涉儀應用於量測薄膜之光學常數」,國立中央大學,碩士論文,民國105年。
[16] ‘‘U-4100 Measurement Systems for Optical Parts New Materials’’, Hitachi High-Technologies Corporation, 2008.
[17] ‘‘http://www.ma-tek.com/zh-tw/services/index/Pro_category_06/207_9’’
[18] R. M. A. Azzam and N. M. Bashara, ‘‘Ellipsometry and Polarized Light’’, Elsevier Science Pub Co, 1987.
[19] S. W. Kim and G. H. Kim, ‘‘Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry’’, Applied Optics, Vol 38, pp. 5968-5973, 1999.
[20] P. Mouroulis, and J. Macdonald, ‘‘Geometrical Optics and Optical Design’’, Oxford University Press, 1997.
[21] A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, ‘‘Three-dimensional cellular-level imaging using full-field optical coherence tomography’’, Phys. Med. Biol., Vol 49, pp. 1227-1234, 2004.
[22] Jinyu Wang, Jean-François Léger, Jonas Binding, A. C. Boccara, S. Gigan, and L. Bourdieu, ‘‘Measuring aberrations in the rat brain by coherence-gated wavefront sensing using a Linnik interferometer’’, Biomedical Optics Express, Vol 3, pp. 2510-2525, 2012.
[23] W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, ‘‘Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera’’, Optics Express, Vol 14, pp. 726-735, 2006.
[24] A Gh Podoleanu, ‘‘Optical coherence tomography’’, The British Journal of Radiology, Vol 78, pp.976-988, 2005.
[25] J. A. Valkenburg and C. L. Woldringh, ‘‘Phase separation between nucleoid and cytoplasm in Escherichia coli as defined by immersive refractometry’’, Journal of Bacteriology, Vol 160(3), pp.1151-1157, 1984.
[26] C. L. Curl, C. J. Bellair, T. Harris, B. E. Allman, P. J. Harris, A. G. Stewart, A. Roberts, K. A. Nugent, and L. M. D. Delbridge, ‘‘Refractive index measurement in viable cells using quantitative phase‐amplitude microscopy and confocal microscopy’’, Cytometry, Vol 65A, pp.88-92, May 2005.
指導教授 郭倩丞(Chien-Cheng Kuo) 審核日期 2019-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明