博碩士論文 106226036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.119.102.137
姓名 許家維(Jia-Wei Xu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 黑斑龍膽花瓣表面結構及其光學特性之研究
(Surface Structures and Optical Characteristics of the Petals of Gentiana scabrida Hayata var. punctulata S.S. Ying)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析★ 應用線狀結構照明提升雙光子顯微鏡解析度
★ 以同調結構照明顯微術進行散射樣本解析度之提升★ 掃描式二倍頻結構照明顯微術
★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究★ 鏡像輔助斷層掃描相位顯微鏡
★ 以數位全像術重建多波長環狀光束之研究★ 相位共軛反射鏡用於散射介質中光學聚焦之研究
★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究★ 倍頻非螢光基態耗損超解析之顯微成像方法
★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用★ 雙光子掃描結構照明顯微術
★ 微投影光學切片超光譜顯微術★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-5-22以後開放)
摘要(中) 在諸多關於花朵的研究中,許多文獻透過花瓣的紫外光影像發現,花瓣內側對紫外光的反射率比外側低,而花瓣內側是花蜜的所在之處,加上昆蟲視覺對於紫外光是敏感的,因此認為花朵這個光學表現是能夠作為一個提示,來增加昆蟲前來採蜜的機會,以利於開花植物繁衍後代。除了紫外光照明下的特徵之外,部分文獻研究的花朵在可見光下也展現與紫外光下能夠對應的紋路,並且透過實驗發現這是結構光帶來的效果,本研究所觀察的花朵,黑斑龍膽,也具有相似的特性,黑斑龍膽是臺灣本土特有種,花瓣上有一圈黑斑的分布,是之所以被稱為黑斑龍膽一個明顯的外觀特徵。黑斑龍膽生長在合歡山中高海拔的紫外光含量較高環境中。黑斑龍膽只在有陽光照射的時候開花,且即使授粉後仍會再度打開,因為開花對於植物而言是十分耗費能量的行為,因此推測這是黑斑龍膽為了因應環境而特別演化的生存方式,為了證實這個說法,本研究透過一些實驗來觀察黑斑龍膽與光交互作用下的關係,包含直接在現場拍攝紫外光和可見光的影像,並且在現場透過表面複製法製作出其花瓣表面複製品,以複製品作為對照來證明表面結構對黑斑龍膽花瓣光學特性帶來的效果。在電子掃描顯微鏡和包埋切片觀察下發現黑斑龍膽花瓣表面結構可以大致分做乳突圓頂型和長條型伴著與之平行的更小光柵結構,分界恰好與黑斑的分布一致,透過角光度系統的實驗結果除了確立了花瓣表面結構對其光學表現占著舉足輕重的影響,配合花朵色素對光的吸收表現,更增加在紫外光照明下的紋路亮暗對比,這事實間接說明了紫外光對黑斑龍膽無可切割的重要性。
摘要(英) Among the research about flower, they noticed the reflectance of inner petal is apparently lower than outer one by taking pictures under UV and there the nectar is. Moreover, the vision of insects is commonly sensitive at UV-A. As a result, they believe that the pattern under UV is a cue to attract insects and it will benefit flowering plants to reproduce. Besides the pattern of petals under UV, it can also correspond to the one under VIS in some flowers and the result caused by surface structure and Gentiana scabrida Hayata var. punctulata S.S. Ying show the similar characteristic. Gentiana scabrida Hayata var. punctulata S.S. Ying is the endemic species in Taiwan and there are some black dots distributing on the petal. Gentiana scabrida Hayata var. punctulata S.S. Ying distribute at high altitude mountain where is UV-rich. Apart from it only bloom during getting sunlight, the flower will open again after pollinating. Bloom consume a lot of energy for plants, we think that this is the way of life which Gentiana scabrida Hayata var. punctulata S.S. Ying has evolved to adapt the environment. To confirm the statement, we design some experiments to observe the relationship between Gentiana scabrida Hayata var. punctulata S.S. Ying and light including the following methods. We capture the image of Gentiana scabrida Hayata var. punctulata S.S. Ying under UV and VIS on the Hehuan mountain and use dental wax to copy the structure surface of the petal, that is negative replica, at the scene. After using epoxy to manufacture the by negative replica, we use the replica as a control to prove the effect of surface structure on the optical properties the petal of Gentiana scabrida Hayata var. punctulata S.S. Ying Observing the surface structure of the petal under the scanning electron microscope and by embedded section, it was found that the surface structure of the petal can be roughly divided into the conical type and the striated type with smaller grating structures parallel to it. The boundary is exactly the same as the distribution of dark spots. In addition to the experimental results of the goninophotometric system, the fact that the surface structure of the petals plays an important role in its optical performance, and the absorption of light by the flower pigment, it also increases the contrast of the bright and dark region under UV light. This fact indirectly illustrates that UV light is very important to Gentiana scabrida Hayata var. punctulata S.S. Ying.
關鍵字(中) ★ 黑斑龍膽 關鍵字(英) ★ Surface Structure
論文目次 中文摘要 vi
Abstract vii
第一章 緒論 1
1-1研究目的與動機 1
1-2文獻探討 2
1-3論文大綱 6
第二章 實驗原理 7
2-1光與物質的交互作用 7
2-2庫貝卡-蒙克理論 10
2-3表面微結構的光學特性 12
2-4表面複製法 14
2-5漫反射量測法 15
第三章 實驗架構與樣本製備 18
3-1高山現場拍攝 18
3-2樣本備置 20
3-3電子掃描顯微鏡表面微結構量測 22
3-4包埋切片影像 23
3-5角光度光譜量測系統與校正 24
3-6角光度影像量測系統與校正 29
第四章 結果與討論 33
4-1花瓣光學特性觀察 33
4-2紫外光角光度量測 35
4-2-1黑斑龍膽花瓣之紫外光角光度影像拍攝 36
4-2-2黑斑龍膽花瓣之紫外光角光度光譜量測 41
4-2-3花瓣表面複製品之紫外光角光度光譜量測 45
4-3可見光角光度量測 48
4-3-1黑斑龍膽花瓣之可見光角光度影像拍攝 49
4-3-2黑斑龍膽花瓣之可見光角光度光譜量測 53
4-3-3花瓣表面複製品之可見光角光度光譜量測 57
4-4黑斑龍膽開花方式對光學特性的影響 60
第五章 結論 65
參考文獻 67
參考文獻 [1] D. Peitsch, A. Fietz, H. Hertel, J. de Souza, D. F. Ventura, and R. Menzel , “The spectral input systems of hymenopteran insects and their receptor -based colour vision,” J.Comp.Physiol. A 170, 23-40 (1992).
[2] K. Lunau, “Visual ecology of flies with particular reference to colour vision and colour preferences,” J.Comp.Physiol. 200(6), 497-512 (2014).
[3] A. J. Schulte, M. Mail1, L. A. Hahn1, and W. Barthlott1, “Ultraviolet patterns of flowers revealed in polymer replica caused by surface architecture,” Beilstein J. Nanotechnol. 10, 459-466 (2019).
[4] K. Lunau, “The ecology and evolution of visual pollen signal,” Plant Syst. Evol. 222, 89-111 (2000).
[5] R. Menzel, “Spectral sensitivity and color vision in invertebrates. In:Autrum H(ed) Comparative physiology and evolution of vision in invertebrates,” in Handbook of sensory physiology VII/6A, H. Autrum eds. (Springer, 1979), pp.503-580.
[6] R. Menzel, D. F. Ventura, H. Hertel, J. M. de Souza, and U. Greggers “Spectral sensitivity of photoreceptors in insect compound eyes:comparison of species and method,” J.Comp.Physiol. A 158, 165-177 (1986).
[7] M. Kolle, Photonic structure inspired by nature (Springer 2011).
[8] F. K. Richtmyer, “The Reflection of Ultraviolet by Flowers.” J.O.S.A & R.S.I 7, 151-168 (1923).
[9] S. Vignolini, M. P. Davey, R. M. Bateman, P. J. Rudall, E. Moyroud1, J. Tratt, S. Malmgren, U. Steiner, and B. J. Glover, “The mirror crack’d: both pigment and structure contribute to the glossy blue appearance of the mirror orchid, Ophrys speculum,” New Phytol. 196, 1038–1047 (2012).
[10] C. J. van der Kooi1, A. G. Dyer, P. G. Kevan, and K. Lunau, “Functional significance of the optical properties of flowers for visual signaling,” Ann. Bot. 00, 1-14 (2018).
[11] P. Kubelka and F. Munk, “Ein Beitrag Zur Optik Der Farbanstriche,” Zeitschrift für Technische Physik 12(11), 593–601 (1931).
[12] V. Džimbeg-Malčić, Ž. Barbarić-Mikočević, and K. Itrić, “Kubelka-Munk theory in describing optical properties of paper (I),” Teh. Vjesn. 18(1), 117-124 (2011).
[13] D. G. Stavenga and C. J. van der Kooi, “Coloration of the Chilean Bellflower Nolana paradoxa, interpreted with a scattering and absorbing layer stack model,” Planta 243, 171–181 (2016).
[14] C. J. van der Kooi1, B. D. Wilts1, H. L. Leertouwer1, M. Staal, J. Theo M. Elzenga, and D. G. Stavenga1, “Iridescent flowers? Contribution of surface structures to optical signaling,” New Phytol. 203, 667-673 (2014).
[15] B. J. Glover and C. Martin, “The role of petal cell shape and pigmentation in pollination success in Antirrhinum majus,” Heredity 80, 778–784 (1998).
[16] E. Moyroud, T. Wenzel, R. Middleton, P. J. Rudall, H. Banks, A. Reed, G. Mellers, P. Killoran, M. M. Westwood, U. Steiner, S. Vignolini, and B. J. Glover1, “Disorder in convergent floral nanostructures enhances signalling to bees,” Nature 550, 469-474 (2017).
[17] A Picture of Specular reflction and diffuse reflection. Available:
https://micro.magnet.fsu.edu/primer/java/scienceopticsu/reflection/specular/index.html

[18] A Picture of Beer-Lambert’s law. Available:
https://www.scienceabc.com/pure-sciences/what-is-beers-law.html
[19] J. W. Goodman, Introduction to fourier optics, third edition (2005).
[20] A. Schweikart, D. Zimin, U. A. Handge, M. Bennemann, V. Altst a¨dt, A. Fery, and K. Koch, “Fabrication of artificial petal sculptures by replication of sub-micron surface wrinkles,” Macromol. Chem. Phys. 211, 259–264 (2010).
[21] https://en.wikipedia.org/wiki/Poly(methyl_methacrylate)
[22] A Picture of the process of hot embossing. Available:
https://www.fujidenolo.co.jp/english/technology/hot-emboss.html
[23] https://blog.xuite.net/twinbase/twblog/156056108-%E9%8B%BC%E5%BD%88%E6%A8%A1%E5%9E%8B%E5%A5%97%E4%BB%B6%E7%B0%A1%E6%98%93+%E7%BF%BB%E6%A8%A1%2F%E5%BE%A9%E8%A3%BD%2F%E6%94%B9%E9%80%A0%E6%95%99%E5%AD%B8~%E8%A3%BD%E4%BD%9C%E6%99%82%E9%96%9330%E5%88%86
[24] R. W. Frei, “Diffuse reflection spectroscopy; applications, standards, and calibration (With special reference to chromatography),” Phys. Chem. 80A(4), 551–565 (1976).
[25] W. Budde, “Calibration of reflectance standards,” Phys. Chem. 80A(4), 585–595 (1976).
[26] http://www.savazzi.net/photography/uv.htm
[27] https://www.ultravioletphotography.com/content/
[28] https://www.youtube.com/watch?v=UrvViq2Y7OE
[29] http://www.savazzi.net/photography/el-nikkor_63mm.htm
[30] A Picture of the flower. Available:
http://bruce0342.blogspot.com/2010/08/blog-post_9.html
[31] A Picture of the epoxy. Available:
https://shop.dechemical.com.tw/product.php?pid_for_show=4465
[32] A Picture of the epoxy. Available:
https://goods.ruten.com.tw/item/show?21620744326658
[33] A Picture of the area of projection. Available:
https://home.gamer.com.tw/creationDetail.php?sn=2928920
[34] S. Maragkaki, C. A. Skaradzinski, R. Nett, and E. L. Gurevich, “Influence of defects on structural colours generated by laser-induced ripples,” Sci. Rep. 10(53) (2020).
[35] https://www.cwb.gov.tw/Data/astronomy/season.pdf
指導教授 陳思妤(Szu-Yu Chen) 審核日期 2020-6-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明