博碩士論文 106226047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:35.175.107.77
姓名 王祖鎧(Tzu-Kai, Wang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以光學二維影像輔助三維空間點雲之人工智慧自動建模技術
(Artificial Intelligence Auto Modeling Technology for 3D Point Cloud Based on Optical 2D Imaging)
相關論文
★ 高動態範圍監控系統之研究★ 手機閃光燈之複合透鏡光學設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-7-1以後開放)
摘要(中) 本論文研究包括空間點雲重建與自動建模。在空間點雲重建部分,為解決點雲因掃描場景紅外雜訊干擾、反射、透明表面造成資訊遺失的問題,我們提出遞迴低通延伸點雲技術來重建點雲完整樣貌;在抗雜訊分析部分,遞迴低通延伸技術具備低通擴張特性,對雜訊有一定的容忍度,訊雜比低的點雲仍有良好的準確度與精確度。
本論文亦提出自動建模技術,結合二維影像邊界萃取、深度學習語意分割與模型假設,我們成功地從空間點雲萃取物件資訊並自動建模,輸出模型交換格式DXF (Drawing Interchange Format)。
摘要(英) The thesis presents a study containing topics of point cloud complement and auto-modeling. In order to solve the problems including strong noise from shiny, infrared source, reflecting or transparent surface, and strong absorb materials, which cause information loss and the defect of the point cloud and, we proposed to use iterative low-pass pervasion method to complete depth images. The experiment result shows that with strong noise interference, iterative low-pass pervasion method still has good accuracy and precision.
We also study auto-modeling technology. With boundary extraction from RGB Images, 2D image semantic segmentation, and hypothesis of model, we successfully extract model information from point cloud and then transfer it to DXF (Drawing Interchange Format) .
關鍵字(中) ★ 點雲重建
★ 空間點雲
★ 語義分割
★ 自動建模
關鍵字(英) ★ Point cloud complement
★ Point cloud
★ Semantic segmentation
★ Auto-modeling
論文目次 致謝 I
中文摘要 III
Abstract IV
目錄 V
圖目錄 IX
表目錄 XIV
第一章 緒論 1
1-1 研究背景與動機 1
1-2 相關研究與回顧 2
1-3 論文架構說明 5
第二章 基礎原理 6
2-1 引言 6
2-2 基本點雲處理 6
2-2-1 點雲去噪 6
2-2-2 體積像素 7
2-2-3 移動最小平方法 7
2-2-4 全場域點雲組合 8
2-2 影像邊界偵測 10
2-2-1 多級邊緣檢測算法 10
2-2-4 Holistically-Nested Edge Detection介紹 11
2-3 二維影像之語義分割 12
2-4 大津二值化演算法 13
第三章 基於二維影像資訊之空間點雲延伸 15
3-1 引言 15
3-2 空間點雲修補流程 16
3-3 實驗量測架構 17
3-3-1 3D影像掃描器 17
3-3-2 相機模型與影像座標校正 19
3-3-3 深度影像生成點雲 22
3-4 二維影像之準確取得物件邊界與區塊資訊方法 25
3-4-1 二維影像邊界與點雲邊界之比較 25
3-4-2 二維影像之準確取得物件邊界與區塊資訊流程 26
3-5 結合局部二維特徵頻率之遞迴低通擴張空間點雲 33
3-5-1 遞迴低通擴張空間點雲流程 33
3-5-2 初始低通遮罩孔徑 37
3-5-3 實驗結果 37
3-5-4 遞迴低通擴張空間點雲還原成效與雜訊評估 43
第四章 以二維影像與空間點雲為基礎之自動建模技術 60
4-1 引言 60
4-2 自動建模技術流程 60
4-3 二維影像語義分割 62
4-3-1 語意分割學習網路 62
4-3-2 語意分割訓練資料庫 62
4-4 DXF檔案編寫 63
4-4-1 DXF檔案格式 63
4-4-2 DXF 文件結構 63
4-4 基於模型化策略與模型假設之模型特徵萃取 66
4-4-1 模型化策略與模型假設 66
4-4-2 桌子實施例之模型化策略與模型假設 66
4-5 實驗結果 68
第五章 結論 81
參考文獻 83
中英文名詞對照表 89
參考文獻 1. Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature 521, 436 (2015).
2. S. Athey, "The impact of machine learning on economics," in Economics of Artificial Intelligence(University of Chicago Press, 2017).
3. O. M. Parkhi, A. Vedaldi, and A. Zisserman, "Deep face recognition," in BMVC, p. 6 (2015).
4. M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, and J. Zhang, "End to end learning for self-driving cars," arXiv preprint arXiv:1604.07316 (2016).
5. J. Chung, M. Donahoe, C. Schmandt, I.-J. Kim, P. Razavai, and M. Wiseman, "Indoor location sensing using geo-magnetism," in Proceedings of the 9th international conference on Mobile systems, applications, and services(ACM), pp. 141-154 (2011).
6. R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, "Towards 3D point cloud based object maps for household environments," Robotics and Autonomous Systems 56, 927-941 (2008).
7. R. B. Rusu, N. Blodow, Z. Marton, A. Soos, and M. Beetz, "Towards 3D object maps for autonomous household robots," in Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on IEEE, pp. 3191-3198 (2007).
8. R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon, "KinectFusion: Real-time dense surface mapping and tracking," in Mixed and augmented reality (ISMAR), 2011 10th IEEE international symposium on IEEE, pp. 127-136 (2011).
9. D. Herrera, J. Kannala, and J. Heikkila, "Joint depth and color camera calibration with distortion correction," IEEE Trans. Pattern Anal. Mach. Intell. 34, 2058-2064 (2012).
10. D. Pagliari, F. Menna, R. Roncella, F. Remondino, and L. Pinto, "Kinect Fusion improvement using depth camera calibration," The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 40, 479 (2014).
11. H. Roth, and M. Vona, "Moving Volume KinectFusion," in BMVC, pp. 1-11 (2012).
12. C. V. Nguyen, S. Izadi, and D. Lovell, "Modeling kinect sensor noise for improved 3d reconstruction and tracking," in 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), 2012 Second International Conference on IEEE, pp. 524-530 (2012).
13. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Advances in neural information processing systems, pp. 1097-1105 (2012).
14. K. Simonyan, and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv preprint arXiv:1409.1556 (2014).
15. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, "Going deeper with convolutions," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9 (2015).
16. K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778 (2016).
17. Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, "3d shapenets: A deep representation for volumetric shapes," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1912-1920 (2015).
18. Y. Zhang, M. Bai, P. Kohli, S. Izadi, and J. Xiao, "Deepcontext: Context-encoding neural pathways for 3d holistic scene understanding," arXiv preprint arXiv:1603.04922 (2016).
19. S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser, "Semantic scene completion from a single depth image," in Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on IEEE, pp. 190-198 (2017).
20. J. Liu, F. Yu, and T. Funkhouser, "Interactive 3D modeling with a generative adversarial network," in 3D Vision (3DV), 2017 International Conference on IEEE, pp. 126-134 (2017).
21. Z. Zhang, "Iterative point matching for registration of free-form curves and surfaces," International journal of computer vision 13, 119-152 (1994).
22. Y. Sato, M. Nakamoto, Y. Tamaki, T. Sasama, I. Sakita, Y. Nakajima, M. Monden, and S. Tamura, "Image guidance of breast cancer surgery using 3-D ultrasound images and augmented reality visualization," IEEE Transactions on Medical Imaging 17, 681-693 (1998).
23. M. L. Tazir, P. Checchin, and L. Trassoudaine, "Color-based 3D point cloud reduction," in Control, Automation, Robotics and Vision (ICARCV), 2016 14th International Conference on(IEEE2016), pp. 1-7.
24. M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva, "Computing and rendering point set surfaces," IEEE Transactions on visualization and computer graphics 9, 3-15 (2003).
25. P. Lancaster, and K. Salkauskas, "Surfaces generated by moving least squares methods," Mathematics of computation 37, 141-158 (1981).
26. W. K. Liu, S. Jun, and Y. F. Zhang, "Reproducing kernel particle methods," International journal for numerical methods in fluids 20, 1081-1106 (1995).
27. W.-K. Liu, S. Li, and T. Belytschko, "Moving least-square reproducing kernel methods (I) methodology and convergence," Computer methods in applied mechanics and engineering 143, 113-154 (1997).
28. C. Tomasi, and T. Kanade, "Detection and tracking of point features," (1991).
29. M. Labbe, and F. Michaud, "Appearance-based loop closure detection for online large-scale and long-term operation," IEEE Transactions on Robotics 29, 734-745 (2013).
30. R. Mur-Artal, and J. D. Tardos, "Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras," IEEE Transactions on Robotics 33, 1255-1262 (2017).
31. M. Labbe, and F. Michaud, "Long-term online multi-session graph-based SPLAM with memory management," Autonomous Robots 42, 1133-1150 (2018).
32. M. Labbe, and F. Michaud, "Online global loop closure detection for large-scale multi-session graph-based SLAM," in Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on(IEEE2014), pp. 2661-2666.
33. M. Labbe, and F. Michaud, "Memory management for real-time appearance-based loop closure detection," in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on(IEEE2011), pp. 1271-1276.
34. P. J. Rousseeuw, "Least median of squares regression," Journal of the American statistical association 79, 871-880 (1984).
35. G. Bradski, and A. Kaehler, "OpenCV," Dr. Dobb’s journal of software tools (2000).
36. E. Rosten, and T. Drummond, "Machine learning for high-speed corner detection," in European conference on computer vision(Springer2006), pp. 430-443.
37. E. Rosten, R. Porter, and T. Drummond, "Faster and better: A machine learning approach to corner detection," IEEE transactions on pattern analysis and machine intelligence 32, 105-119 (2010).
38. Y. Ke, and R. Sukthankar, "PCA-SIFT: A more distinctive representation for local image descriptors," in Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on(IEEE2004), pp. II-II.
39. D. G. Lowe, "Object recognition from local scale-invariant features," in Computer vision, 1999. The proceedings of the seventh IEEE international conference on(Ieee1999), pp. 1150-1157.
40. H. Bay, T. Tuytelaars, and L. Van Gool, "Surf: Speeded up robust features," in European conference on computer vision(Springer2006), pp. 404-417.
41. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, "Speeded-up robust features (SURF)," Computer vision and image understanding 110, 346-359 (2008).
42. J. Canny, "A computational approach to edge detection," IEEE Transactions on pattern analysis and machine intelligence, 679-698 (1986).
43. S. Xie, and Z. Tu, "Holistically-nested edge detection," in Proceedings of the IEEE international conference on computer vision(2015), pp. 1395-1403.
44. J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431-3440 (2015).
45. K. Fukushima, and S. Miyake, "Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition," in Competition and cooperation in neural nets (Springer), pp. 267-285 (2017).
46. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database," in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on IEEE, pp. 248-255 (2009).
47. M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, "The pascal visual object classes (voc) challenge," International journal of computer vision 88, 303-338 (2010).
48. N. Otsu, "A threshold selection method from gray-level histograms," IEEE transactions on systems, man, and cybernetics 9, 62-66 (1979).
49. W. S. Cleveland, "Robust locally weighted regression and smoothing scatterplots," Journal of the American statistical association 74, 829-836 (1979).
50. L. Wilkinson, "Statistics," in The Grammar of Graphics(Springer,), pp. 165-208 (1999).
51. Z. Zhang, "A flexible new technique for camera calibration," IEEE Transactions on pattern analysis and machine intelligence 22 (2000).
52. J. Heikkila, and O. Silven, "A four-step camera calibration procedure with implicit image correction," in Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on IEEE, pp. 1106-1112 (1997).
53. D. Scaramuzza, A. Martinelli, and R. Siegwart, "A toolbox for easily calibrating omnidirectional cameras," in Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on IEEE, pp. 5695-5701 (2006).
54. S. Urban, J. Leitloff, and S. Hinz, "Improved wide-angle, fisheye and omnidirectional camera calibration," ISPRS Journal of Photogrammetry and Remote Sensing 108, 72-79 (2015).
55. S. W. Smith, "The scientist and engineer′s guide to digital signal processing," (1997).
56. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs," IEEE transactions on pattern analysis and machine intelligence 40, 834-848 (2018).
57. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "Semantic image segmentation with deep convolutional nets and fully connected crfs," arXiv preprint arXiv:1412.7062 (2014).
58. M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, "The pascal visual object classes challenge: A retrospective," International journal of computer vision 111, 98-136 (2015).
59. AutoCAD Mechanical: User′s Guide (Autodesk, 2003).
60. A. Mustun, R. J. C. Jr., C. Ahmels, and A. Tscharner, "DXFlib," https://www.ribbonsoft.com/en/90-dxflib.
61. M. Moitzi, "ezdxf," http://ezdxf.readthedocs.io/en/latest/dxfinternals/filestructure.html.
指導教授 孫慶成 楊宗勳 審核日期 2018-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明