博碩士論文 106226055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.191.171.235
姓名 賴郁琦(Yu-Chi Lai)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用單像素造影法之光譜解析影像研究
(Spectrally-resolved Images by Using Single-pixel Imaging Approach)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-1以後開放)
摘要(中) 本論文提出一種利用單像素成像 (Single-pixel imaging, SPI) 技術結合光譜資訊之研究,SPI適用於非可見波長的成像和具有能夠在低強度光線的情況下成像,而透過本論文之實驗系統架構不僅能在低強度之環境下量測,更能透過物體反射光資訊獲得具有不同光譜資訊的影像。本實驗使用一系列具有不同空間頻率之Hadamard圖案投影至樣品上,接著利用圖案間的頻率差異,便可以在樣品上產生時變的空間頻率,並且同步擷取光譜偵測器上的數值,最後將具有不同空間頻率的Hadamard圖案和光譜儀中每個像素的光偵測器對應的波長強度資訊進行解析,進而得到各個波長的光譜解析影像。
從影像重建結果可以得知,Hadamard圖案的大小與數量會影響影像重建結果,而透過光譜解析系統我們便可以利用不同波段的光譜資訊進行影像重建,並藉由光譜資訊得知物體的反射或螢光波長重建光譜影像,且亦能透過重建後之光譜影像分析出物體的反射或螢光波長,並完整重建不同樣品間的形狀與顏色,且樣品之間的光譜資訊並不會相互干擾,因此便可以得到獨立的光譜資訊,本論文亦針對影像對比度 (Visibility) 進行分析,透過影像對比度與樣品的比較可以得知此系統架構的空間解析度,本論文提出之光譜解析影像系統架構的空間解析度為55.7 μm、波長解析度為1.69 nm。此外,藉由影像相關係數能夠進而驗證出,經由此光譜解析影像系統後能之重建影像與原始物體相似性極高。
摘要(英) In this thesis, sing single-pixel imaging (SPI) technology combined with spectral information. SPI can be used to acquire the images of the objects at low light condition and in the non-visible light range of the electromagnetic spectrum. The presented imaging system can not only measure the signals in a lower illumination power, but also obtain the images with different spectral information by analyzing the information of the reflected light of the object. A series of Hadamard patterns with different spatial frequencies were projected on the sample. The different Hadamard patterns were used to generate the illumination of the time-varying spatial frequency on the sample. By the order of the illumination patterns, the reflection intensities of the objects were captured by the spectrometer simultaneously. Hence, the information of the Hadamard patterns with different spatial frequencies and the spectral intensities recorded by each pixel of the detector in the spectrometer were calculated to reconstruct the spectrally-resolved images for every wavelengths.
According to the experimental results, the image reconstruction results are affected by the size and number of Hadamard patterns. For the spectrally-resolved imaging, the different spectral information acquired from the reflection or fluorescence signals of the objects was used to reconstruct the spectrally-resolved images. Moreover, by analyzing the reconstructed spectral images, the reflection or fluorescent information of the objects can be also obtained and reproduced the shape and color information of different samples exactly. Further, we can obtain individual spectrum of every object in the spectrally-resolved images. In this thesis, we demonstrated the spatial resolution of the presented spectrally-resolved imaging system by using the analysis of the image contrast (Visibility). The spatial and the spectral resolution of the presented imaging system in this study could be found about 55.7 μm and 1.69 nm, respectively. Furthermore, the analysis of the image correlation coefficient also shows that the reconstructed image via the spectrally-resolved images system can be highly similar to the original object .
關鍵字(中) ★ 單像素成像
★ Hadamard矩陣
★ 光譜儀
關鍵字(英) ★ Single-pixel Imaging
★ Hadamard matrix
★ Spectrometer
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XVI
第一章 緒論 1
1-1 前言 1
1-2 相關研究與回顧 3
1-2-1單像素成像技術演進與發展 3
1-2-2結構光照明圖案比較 10
1-2-3 單像素光譜成像系統介紹 12
1-3 研究動機 17
1-4 論文架構說明 18
第二章 基礎原理 19
2-1 單像素成像原理 19
2-2 Hadamard矩陣 20
2-3 Whittaker-Shannon 取樣定理與空間帶寬乘積 23
2-4 影像對比度分析 26
2-5 影像相關性分析 29
第三章 實驗方法與系統架構 31
3-1 單像素影像系統架構 31
3-2 光譜解析影像系統架構 33
3-3 樣品製備 38
3-4 總結 41
第四章 實驗結果與分析 42
4-1單像素影像重建結果 42
4-1-1 影像空間解析度與對比度分析 42
4-1-2 探討Hadamard投影圖案大小對影像重建結果之影響 47
4-1-3探討Hadamard投影圖案數量對影像重建結果之影響 49
4-2白光影像重建結果 52
4-3光譜解析影像重建結果 55
4-3-1探討螢光樣品之光譜解析影像 55
4-3-2 探討多色樣品對影像重建結果之影響 63
4-4影像相關係數分析 71
4-5總結 73
第五章 結論 75
參考文獻 77
中英文名詞對照表 82
參考文獻 1. Aristotle, Problems, Volume I: Books 1-19 (Harvard University Press, Cambridge, 2011).
2. Stephan Füssel, The Gutenberg Bible (Taschen GmbH, Köln, 2018).
3. M. Stokstad, Art History: Second Edition (Prentice Hall College Div, New Jersey, 2002).
4. M. F. Tompsett, G. F. Amelio, W. J. Bertram, R. R. Buckley, W. J. McNamara, J. C. Mikkelsen, and D. A. Sealer, “Charge-coupled imaging devices: Experimental results,” IEEE Transactions on Electron Devices 18, 992 – 996 (1971).
5. D. Kahng, “Electric field controlled semiconductor device,” U. S. Patent Office, US3,102,230A (1963).
6. C. T. Sah and F. Wanlass, “Low stand-by power complementary field effect circuitry,” U. S. Patent Office, US3,356,858A (1967).
7. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. Kelly, and B. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag. 25, 83-91 (2008).
8. D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly, and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain compression,” Proc. SPIE 6065, 606509 (2006).
9. E. Tajahuerce, V. Duran, P. Clemente, E. Irles, F. Soldevila, P. Andres, and J. Lancis, “Image transmission through dynamic scattering media by single-pixel photodetection,” Opt. Express 22, 16945-16955 (2014).
10. N. Radwell, K. J. Mitchell, G. M. Gibson, M. P. Edgar, R. Bowman, and M. J. Padgett, “Single-pixel infrared and visible microscope,” Optica 1, 285-289 (2014).
11. M. P. Edgar, G. M. Gibson, R. W. Bowman, B. Sun, N. Radwell, K. J. Mitchell, S. S. Welsh, and M. J. Padgett, “Simultaneous real-time visible and infrared video with single-pixel detectors,” Sci. Rep. 5, 10669 (2015).
12. L. McMackin, M. A. Herman, B. Chatterjee, and M. Weldon, “A high-resolution SWIR camera via compressed sensing,” Proc. SPIE 8353, 835303 (2012).
13. H. Peng, Z. Yang, D. Li, and L. Wu, “The application of ghost imaging in infrared imaging detection technology,” Proc. SPIE 9795, 97952O (2015).
14. N. P. Pitsianis, D. J. Brady, A. Portnoy, X. Sun, T. Suleski, M. A. Fiddy, M. R. Feldman, and R. D. TeKolste, “Compressive imaging sensors,” Proc. SPIE 6232, 62320A (2006).
15. Q. Tong,Y. Jiang, H. Wang, and L. Guo, “Image reconstruction of dynamic infrared single-pixel imaging system,” Opt. Commun. 410, 35-39 (2018).
16. K. Fan, J. Y. Suen, and W. J. Padilla, “Graphene metamaterial spatial light modulator for infrared single pixel imaging,” Opt. Express 25, 25318-25325 (2017).
17. N. Huynh, E. Zhang, M. Betcke, S. Arridge, P. Beard, and B. Cox, “Single-pixel optical camera for video rate ultrasonic imaging,” Optica 3, 26-29 (2016).
18. R. I. Stantchev, B. Sun, S. M. Hornett, P. A. Hobson, G. M. Gibson, M. J. Padgett, and E. Hendry,” Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector,” Sci. Adv. 2, e1600190 (2016).
19. W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, “A single-pixel terahertz imaging system based on compressed sensing,” Appl. Phys. Lett. 93, 121105 (2008).
20. W. K. Yu, X. R. Yao, X. F. Liu, L. Z. Li, and G. J. Zhai, “Three-dimensional single-pixel compressive reflectivity imaging based on complementary modulation,” Appl. Opt. 54, 363-367 (2015).
21. M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
22. Z. Zhang and J. Zhong, “Three-dimensional single-pixel imaging with far fewer measurements than effective image pixels,” Opt. Lett. 41, 2497-2500 (2016).
23. Y. Zhang, G. M. Gibson, R. Hay, R. W. Bowman, M. J. Padgett, and M. P. Edgar, “A fast 3D reconstruction system with a low-cost camera accessory,” Sci. Rep. 5, 10909 (2015).
24. A. Kirmani, D. Venkatraman, D. Shin, A. Colaço, F. N. C. Wong, J. H. Shapiro, and V. K. Goyal, “First-Photon imaging,” Sci. Rep. 343, 58-61 (2013).
25. A. Kirmani, A. Colaço, F. N. C. Wong, and V. K. Goyal, “Exploiting sparsity in time-of-flight range acquisition using a single time-resolved sensor,” Opt. Express 22, 21485-21507 (2011).
26. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802 (2008).
27. J. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A79, 053840 (2009).
28. J. B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express 20, 16892 (2012).
29. E. S. Balaguer, P. Clemente, E. Tajahuerce, F. Pla, and J. Lancis, “Full-color stereoscopic imaging with a single-pixel photodetector,” J. Dis. Technol. 12, 417-422 (2016).
30. S. S. Welsh, M. P. Edgar, R. Bowman, P. Jonathan, B. Sun, and M. J. Padgett, “Fast full-color computational imaging with single-pixel detectors,” Opt. Express 21, 23068-23074 (2013).
31. V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, J. Lancis, “Single-pixel polarimetric imaging,” Opt. Lett. 37, 824-826 (2012).
32. P. Clemente, V. Durán, E. Tajahuerce, P. Andrés, V. Climent, and J. Lancis, “Compresssive holography with a single pixel detector,” Opt. Lett 38, 2524-2527 (2013).
33. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Sci. Rep. 340, 844-847 (2013).
34. P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual photography,” ACM Trans. Graph. 24, 745-755 (2005).
35. B. Lochocki, A. Gambin, S. Manzanera, E. Irles, E. Tajahuerce, J. Lancis, and P. Artal, “Single pixel camera ophthalmoscope,” Optica 3, 1056-1059 (2016).
36. V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging,” Opt. Lett. 37, 824-826 (2012).
37. P. Clemente, V. Durán, E. Tajahuerce, P. Andrés, V. Climent, and J. Lancis, “Compressive holography with a single-pixel detector,” Opt. Lett. 38, 2524-2527 (2013).
38. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8, 605-609 (2014).
39. S. S. Welsh, M. P. Edgar, R. Bowman, B. Sun, and M. J. Padgett, “Near video-rate linear Stokes imaging with single-pixel detectors,” J. Opt. 17, 025705 (2015).
40. M. J. Sun, M. P. Edgar, D. B. Phillips, G. M. Gibson, and M. J. Padgett, “Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning,” Opt. Express 24, 10476-10485 (2016).
41. L. M. León, P. Clemente, Y. Mori, V. Climent, J. Lancis, and E. Tajahuerce, “Single-pixel digital holography with phase-encoded illumination,” Opt. Express 25, 4975-4984 (2017).
42. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6, 6225 (2015).
43. Z. Zhang, X. Wang, and J. Zhong, “Fast Fourier single-pixel imaging using binary illumination,” Sci. Rep. 7, 12029 (2017).
44. L. Bian, J. Suo, X. Hu, F. Chen, and Q. Dai, “Efficient single pixel imaging in Fourier space,” J. Opt. 18, 085704 (2016).
45. H. Jiang, S. Zhu, H. Zhao, B. Xu, and X. Li, “Adaptive regional single-pixel imaging based on the Fourier slice theorem,” Opt. Express 25, 15118-15130 (2017).
46. Z. Zhang, X. Wang, G. Zheng, and J. Zhong, “Hadamard single-pixel imaging versus Fourier single-pixel imaging,” Opt. Express 25, 19619-19639 (2017).
47. Y. August, C. Vachman, Y. Rivenson, and A. Stern, “Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains,” Appl. Opt. 52, D46-D54 (2013).
48. S. Jin, W. Hui, B.Liu, C. Ying, D. Liu, Q. Ye, W. Zhou, and J. Tian, “Extended-field coverage hyperspectral camera based on a single-pixel technique,” Appl. Opt. 55, 4808-4813 (2016).
49. Z. Li, J. Suo, X. Hu, C. Deng, J. Fan, and Q. Dai, “Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation,” Sci. Rep. 7, 41435 (2016).
50. J. J. Sylvester, “Thoughts on inverse orthogonal matrices, simultaneous sign succession, and tessellated pavements in two or more colours, with applications to Newton′s rule, ornamental tile work, and the theory of numbers,” Phil. Mag 34, 461-475 (1867).
51. M. Plotkin, “Decomposition of Hadamard matrices,” J. Comb. Theory 13, 127-130 (1972).
52. J. Hadamard, “Resolution dune question relative aux determinants”, Bull. Sci.Math, 17, 240-246 (1893).
53. K. Nitta, S. Hayashi, and O. Matoba, “Divided Hadamard pattern illumination for fewer times measurements,” Work. Inf. Opt. 20152, 1-3 (2015).
54. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
55. R. A. Millikan, Biographical Memoir of Albert Abraham Michelson (National Academy of Sciences, Washington, 1938).
56. 孫慶成,光電工程概論 (全華圖書股份有限公司,新北市,2012)。
57. J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at the correlation coefficient,” Am. Stat. 42, 59–66 (1988).
58. D. E. Hinkle, W. Wiersma, and S. G. Jurs, Applied Statistics for the Behavioral Sciences (Houghton Mifflin, Boston, 2002).
59. 陳宇恆,基於數位光學相位共軛器浮空於多重鏡面之立體投影之研究,國立中央大學光電所碩士論文,中華民國一百零六年。
60. B. Turan and S. Ucar, Vehicular Visible Light Communications (IntechOpen, 2017).
61. A. ferrero, EMCCD Photometry, UCD School of Physics (2008).
指導教授 簡汎清 孫慶成(Fan-Ching Chien Ching-Cherng Sun) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明