博碩士論文 106226056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.118.254.94
姓名 林學汕(Syue-Shan Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以非週期性晶疇極化反轉鈮酸鋰作為電光可調腔內泵浦多波長光參量振盪器之研究
(Electro-optic spectrum tuning in multiline intracavity optical parametric oscillators using aperiodically poled lithium niobate)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究★ 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究
★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究
★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究
★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射
★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究
★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究
★ 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用基因演算法設計一非週期晶籌極化反轉鈮酸鋰結構,結構中包含多個光參量產生器機制與非對稱正負晶籌長度比設計,用來產生多個通訊波段的雷射訊號,且藉由電光調制的方式對光參量振盪器之輸出訊號光進行電光波長調制。有別於以往使用模擬退火法的方式來優化AOS結構,基因演算法優化之NOS結構因無同長度區塊的限定,所以自由度較大,所優化的結構在轉換效率、光譜保真度與製程容忍度都有較好的表現。
實際製程晶片並量測後,本設計在光參量振盪器訊號光的電光波長調制率於晶片溫度120℃時有最佳值0.7325nm/??⁄??,且在設計之相位匹配溫度40℃上升到100℃後都有良好的輸出訊號光相對功率比,也成功改善了光譜保真度低的問題。
未來可進一步修改晶體設計,改善電光調制範圍不廣的缺點,並改以環型共振腔的方式共振輸出訊號光,進一步窄化訊號光頻寬,達成快、精確與穩定的可調式窄頻寬雷射源,於在光通訊系統、訊號處理與積體光學等領域中有不容小看的競爭力。
摘要(英) In this study, we have developed a genetic algorithm to calculate a nonperiodic optical superlattice (NOS) structure in LiNbO3 crystal for achieving EO spectrum tuning in multiline intracavity optical parametric oscillators (IOPOs) in telecom C band region. The NOS structure is quasi-phase-matched to perform 1064-nm pumped multiple optical parametric down conversion processes with an engineered certain asymmetric domain length ratio for achieving a desired EO spectrum tuning. The major advantage of an NOS structure calculated by genetic algorithm over the aperiodic optical superlattice (AOS) structure calculated by simulated annealing method that has been adopted in our previous studies is its larger degree of design freedom without suffering from the limitation of setting a unit domain block for building an AOS structure. Besides, the NOS structure has better performance in conversion efficiency, spectral shape fidelity, and fabrication tolerance.
When the fabricated NOS LiNbO3 chip (with an asymmetric domain length ratio of ~0.434) is operated in a 1064-nm pumped dual signal-line (1540 and 1550 nm at 40oC) IOPO, we successfully achieve a highest spectral tuning rate of 0.7325 nm/(kV/mm) in the system at a temperature of 120℃ with much improved spectral-shape fidelity during tuning.
In the experiment, we encountered a measurement problem of power decay with time during the application of a high tuning electric field (>500 V/mm) along the z-axis of the NOS LiNbO3 crystal, the origin is not yet known. The use of a cw OPO is desirable for reducing the problem as well as for having highly narrowed OPO lines.
This novel EO spectrum tunable dual-line IOPO system can be of great potential in many applications such as optical communications, signal processing, THz generation, and integrated optics.
關鍵字(中) ★ 鈮酸鋰
★ 電光效應
★ 光參量振盪器
關鍵字(英) ★ lithium niobate
★ Electro-Optic Effect
★ Optical Parametric Oscillator
論文目次 第一章 緒論 ............................................. 1
1.1 前言 ............................................... 1
1.2 鈮酸鋰晶體 .......................................... 2
1.3 文獻簡介 ............................................ 6
1.4 研究動機 ............................................ 8
1.5 內容概要 ........................................... 10
第二章 理論 ............................................ 11
2.1 相位匹配 ........................................... 11
2.2 準相位匹配(Quasi-phase matching, QPM) .............. 13
2.3 光參量振盪器 ....................................... 16
2.4 電光效應 ........................................... 19
2.5 電光調制光參量振盪器 ............................... 21
2.6 共振腔品質係數調制(Q-switch) ....................... 24
第三章 模擬方法與結果 .................................. 28
3.1 基因演算法 ......................................... 28
3.1.1 產生初始族群(population) ......................... 29
3.1.2 編碼 ............................................ 29
3.1.3 選擇(selection) ................................. 29
3.1.4 交配(crossover) ................................. 32
3.1.5 突變(mutation) .................................. 34
3.1.6 子代替代母代成為新世代(reinsertion) .............. 35
3.1.7 遷移(migration) ................................. 35
3.2 Nonperiodic Optical Superlattice .................. 37
3.3 模擬結果 .......................................... 39
3.3.1 基因演算法程式之試證 ............................. 39
3.3.2 非對稱正負晶籌長度比之非週期鈮酸鋰光參量產生器之設計 42
第四章 晶片製程 ........................................ 47
4.1 黃光微影製程 ....................................... 47
4.2 極化反轉製程 ....................................... 48
4.3 電極製程與拋光 ..................................... 51
第五章 實驗量測與結果分析 ............................... 52
5.1 量測系統 ........................................... 52
5.2 溫度對光參量振盪器波長之調制 ........................ 53
5.3 電光調制光參量振盪器量測 ............................ 56
5.3.1 量測問題 ......................................... 56
5.3.2 量測結果 ......................................... 57
5.3.3 溫度對電光調制光參量振盪器的影響 .................. 60
5.4 雷射脈衝寬度與尖峰功率之量測 ........................ 65
5.5 實驗結果分析 ....................................... 68
第六章 結論與未來展望 .................................. 69
6-1 結論 .............................................. 69
6-2 未來展望............................................ 69
參考文獻 ............................................... 72
參考文獻 第一章 緒論
[1.1] A. Einstein, “Zur quantentheorie der strahlung.”, Phys. Z., Vol 18, pp. 121-128, 1917.
[1.2] T. H. Maiman, “Stimulated optical radiation in ruby”, 1960
[1.3] E. P. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics.”, Physical Review Letters, Vol.7, No.4, p. 118, 1961
[1.4] S. E. Miller, “Integrated optics: An introduction.”, The Bell System Technical Journal, Vol.48, No.7, pp. 2059-2069, 1969
[1.5] G. D. Miller, “Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance”, Stanford university, Doctoral dissertation, 1998
[1.6] W. H. Zachariasen, Skr. Norske Vid-Ada., Oslo, Mat. Naturv., No.4, 1928
[1.7] P. Lerner, C. Legras, and J. P. Duman, “Stoechiométrie des Monocristaux de Métaniobate de Lithium.”, Journal of Crystal Growth, pp. 3-4, 1968
[1.8] 徐寧,「雙週期性晶格極化反轉鈮酸鋰電光模態轉換器調制之體積全像光參量振盪器之頻譜窄化機制探討」,國立中央大學,碩士論文,2012
[1.9] D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate.”, Optics letters, Vol.22, No.20, pp. 1553-1555, 1997
[1.10] A. Yariv, and P. Yeh, “Optical waves in crystals (Vol. 5).”, New York, Wiley, 1984
[1.11] J. A. Giordmaine, and R. C. Miller, “Tunable coherent parametric oscillation in LiNbO3 at optical frequencies.”, Physical Review Letters, Vol.14, No.24, p. 973, 1965
[1.12] J. Raffy, T. Debuisschert, and J. P. Pocholle, “Widely tunable optical parametric oscillator with electrical wavelength control.”, Optics letters, Vol.22, No.21, pp. 1589-1591, 1997
[1.13] C. S. Yu, and A. H. Kung, “Grazing-incidence periodically poled LiNbO3 optical parametric oscillator.”, JOSA B, Vol.16, No.12, pp. 2233-2238, 1999
[1.14] L. B. Kreuzer, “RUBY‐LASER‐PUMPED OPTICAL PARAMETRIC OSCILLATOR WITH ELECTRO‐OPTIC EFFECT TUNING.”, Applied Physics Letters, Vol.10, No.12, pp. 336-338, 1967
[1.15] Y. Q. Lu, J. J. Zheng, Y. L. Lu, N. B. Ming, and Z. Y. Xu, “Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by
electro-optic effect.”, Applied physics letters, Vol.74, No.1, pp. 123-125, 1999
[1.16] 呂學聰,「以非週期性晶疇極化反轉鈮酸鋰晶體作為電光波長調變光參量產生器」,國立中央大學,碩士論文,2011
[1.17] N. O’Brien, M. Missey, P. Powers, V. Dominic, and K. L. Schepler, “Electro-optic spectral tuning in a continuous-wave, asymmetric-duty-cycle, periodically poled
LiNbO3 optical parametric oscillator.”, Optics letters, Vol.24, No.23, pp. 1750-1752, 1999
[1.18] Y. H. Chen, H. P. Chung, W. K. Chang, H. T. Lyu, J. W. Chang, and C. H. Tseng, “Electro-optically tunable, multi-wavelength optical parametric generators in
aperiodically poled lithium niobates.”, Optics express, Vol.20, No.27, pp. 28989-29001, 2012
[1.19] K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, “Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate.”, Optics Letters, Vol.25, No.23, pp. 1714-1716, 2000
[1.20] M. Wirth, A. Fix, P. Mahnke, H. Schwarzer, F. Schrandt, and G. Ehret, “The airborne multi-wavelength water vapor differential absorption lidar WALES: system
design and performance.”, Applied Physics B, Vol.96, No.1, p. 201, 2009
[1.21] J. Spigulis, L. Gailite, A. Lihachev, and R. Erts, “Simultaneous recording of skin blood pulsations at different vascular depths by multiwavelength
photoplethysmography.”, Applied optics, Vol.46, No.10, pp. 1754-1759, 2007
第二章 理論
[2.1] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric.”, Physical review, Vol.127, No.6, p. 1918, 1962
[2.2] Y. C. Huang, “Principles of Nonlinear Optics Course Reader.”, Institute of Photonics Technologies / Department of Electrical Engineering, National Tsinghua University, Hsinchu, Taiwan, 2007
[2.3] 張煒堃,「以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射」,國立中央大學,碩士論文,2009
第三章 模擬方法與結果
[3.1] J. H. Holland, “Genetic algorithms.”, Scientific american, Vol.267, No.1, pp. 66-73, 1992
[3.2] G. Cormier, R. Boudreau, and S. Thériault, “Real-coded genetic algorithm for Bragg grating parameter synthesis.”, JOSA B, Vol.18, No.12, pp. 1771-1776, 2001
[3.3] A. Popov, “Genetic algorithms for optimization.”, User Manual, Hamburg, 2013,2005
[3.4] W. Y. Lin, W. Y. Lee, and T. P. Hong, “Adapting crossover and mutation rates in genetic algorithms.”, J. Inf. Sci. Eng., Vol.19, No.5, pp. 889-903, 2003
[3.5] R. L. Haupt, and S. Ellen Haupt, “Practical genetic algorithms.”, 2004
[3.6] 劉宜臻,「設計非週期性準相位匹配光柵以達成非等間距之多波長轉換」,國立清華大學,碩士論文,2009
[3.7] 鍾宏彬,「以單一非週期性晶疇極化反轉鈮酸鋰電光晶片達成可調變多波長之窄頻光參量產生/振盪器之研究」,國立中央大學,碩士論文,2012
第四章 晶片製程
[4.1] S. Miyazawa, “Ferroelectric domain inversion in Ti‐diffused LiNbO3 optical waveguide.”, Journal of Applied Physics, Vol.50, No.7, pp. 4599-4603, 1979
[4.2] J. Webjorn, F. Laurell, and G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide.”, IEEE Photonics
technology letters, Vol.1, No.10, pp. 316-318, 1989
[4.3] A. C.Nutt, V. Gopalan, and M. C. Gupta, “Domain inversion in LiNbO3 using direct electron‐beam writing.”, Applied physics letters, Vol.60, No.23, pp. 2828-2830, 1992
[4.4] A. Agronin, Y. Rosenwaks, and G. Rosenman, “Ferroelectric domain reversal in LiNbO3 crystals using high-voltage atomic force microscopy.” Applied Physics
Letters, Vol.85, No.3, pp. 452-454,2004
[4.5] D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, “Enhancement of second‐harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains.”, Applied Physics Letters, Vol.37, No.7, pp. 607-609, 1980
[4.6] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled
LiNbO3.”, JOSA B, Vol.12, No.11, pp. 2102-2116, 1995
第五章 實驗量測與結果分析
第六章 結論與未來展望
[6.1] P. Gross, M. E. Klein, H. Ridderbusch, D. H. Lee, J. P. Meyn, R. Wallenstein, and K. J. Boller, “Wide wavelength tuning of an optical parametric oscillator through electro-optic shaping of the gain spectrum.”, Optics letters, Vol.27, No.16, pp. 1433-1435, 2002
[6.2] S. T. Lin, Y. Y. Lin, R. Y. Tu, Y. C. Huang, A. C. Chiang, and J. T. Shy, “3-μm Continuous-wave singly resonant OPO.”, In 2008 Conference on Lasers and Electro-
Optics and 2008 Conference on Quantum Electronics and Laser Science, pp. 1-2, 2008
指導教授 陳彥宏(Yen-Hung Chen) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明