博碩士論文 106226068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.206.194.161
姓名 石晉羽(Jin-Yu Shih)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以表面活化官能基增進塑膠基板附著性之研究
(Improving the adhesion of plastic substrate by surface-activated functional groups)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 石墨烯透明導電膜與其成長模型之研究★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究
★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率
★ 化學氣相沉積石墨烯透明導電膜之製程與分析★ 應用光學導納軌跡法提升太陽能選擇性吸收膜之光熱轉換效率研究
★ 單晶銅成長石墨烯及其可撓性之研究★ 高反射多層膜抗雷射損傷閥值之研究
★ 高穿透類鑽碳膜之研究★ 透鏡品質檢測基於四波橫向剪切干涉儀
★ 製備超親水聚合膜在聚碳酸酯表面研究★ 利用真空噴塗系統製備UV固化膜之研究
★ 即時性多角度光譜儀系統 之校正與應用★ 進階簡型演算法應用於優化光學薄膜設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-15以後開放)
摘要(中) 近年來隨著車用電子智慧化的趨勢蓬勃發展,以塑膠作為車用顯示面板的基材有著成本低廉、良好光學特性、抗腐蝕等得天獨厚的產品價值;然而,與玻璃相比之下,塑膠基板與薄膜之間的附著性不佳,且易吸收水氣,影響鍍膜的環境,進而造成脫膜的情況。
本研究為解決上述塑膠鍍膜的問題,對於塑膠基板進行水氣烘烤處理,建立出於短時間內將基板水氣烘乾的實驗方法。並利用離子源對塑膠進行表面活化,使其增加表面官能基鍵結數,大幅提升基板表面與薄膜之附著性,並量測活化後基板所含極性官能基的訊號強度,找出最佳化參數。最後,透過沉積缺氧態薄膜作為基板與薄膜之間的附著層,搭配四層抗反射膜製成樣品,進行溫度85oC、相對濕度85%的高溫高濕環境測試。
最終,由烘烤、表面活化、附著層沉積後之塑膠基板,能於高溫高濕環境測試中承受1000小時不脫膜。
摘要(英) In recent years, with the development of smart automotive electronics, the use of plastic as a substrate for automotive display has a unique product value of low cost, good optical properties, and corrosion resistance. However, compared with glass, the adhesion for plastic between the substrate and the film is worst due to it low surface energy. Moreover, it is easily absorb some water contents on its surface, causing the out-gassing during the deposition process.
In order to solve the above problem of plastic coating, the study performs a baking treatment for plastic substrate before thin film deposition, and establishes an experimental method for removing the water contents in a short time. The surface of the plastic is modified by an ion source to increase the number of surface functional groups, greatly improve the adhesion of the substrate surface to the film. The functional groups are measured by FTIR. We also deposited an oxygen-deficient thin film as an interlayer between substrate and anti-reflective(AR) coating.
Finally, the plastic substrate treated by baking, surface activation, and adhesion layer deposition can pass the high temperature/humidity environmental test for 1000 hours without thin films peeling.
關鍵字(中) ★ 表面活化
★ 塑膠鍍膜
★ 附著性
關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究背景 3
1.3 研究內容 6
1.4 本文架構 7
第二章 基礎理論與文獻回顧 8
2.1 電漿表面活化 8
2.1.1 電漿基本原理 8
2.1.2 表面活化介紹 10
2.1.3 表面活化機制 13
2.2 物理氣相沉積法(Physical Vapor Deposition, PVD) 15
2.2.1 磁控濺鍍法(Magnetron Sputtering Deposition) 15
2.2.2 電子鎗蒸鍍法(E-Beam Evaporation) 17
2.3 光學薄膜理論 19
2.3.1 光學導納 (Optical admittance) 19
2.3.2 導納軌跡法 19
2.3.3 多層抗反射膜設計 21
第三章 實驗方法與儀器介紹 23
3.1 實驗方法 23
3.1.1 實驗流程 23
3.1.2 實驗步驟 24
3.2 量測儀器原理與介紹 29
3.2.1 紫外/可見/近紅外光光譜儀(UV/VIS/NIR Spectrophotometer) 29
3.2.2 傅里葉轉換紅外光譜儀(Fourier Transform Spectrometer, FTIR) 31
3.2.3 微量天平 32
3.2.4 恆溫恆濕機 32
3.2.5 奈米級歐傑電子能譜儀(Nano-Auger Electron Nanoscope) 34
3.2.6 X射線光電子能譜儀(X-ray Photoelectron Spectroscope, XPS) 35
3.2.7 附著性測試膠帶 36
3.3 離子源濺射系統 37
第四章 實驗結果與討論 40
4.1 烘烤效率實驗 40
4.1.1 80oC烘烤實驗 40
4.1.2 100oC烘烤實驗 41
4.1.3 烘烤效率比較 41
4.1.4 水氣吸濕實驗 42
4.2 表面活化與官能基分析 44
4.2.1 弱鍵結層生成確認 44
4.2.2 表面活化官能基分析 46
4.3 附著層沉積與元素分析 49
4.3.1 電子鎗蒸鍍沉積SiO分析 49
4.3.2 磁控濺鍍沉積SiOx分析 51
4.4 抗反射膜設計與沉積 52
4.4.1 高低折射率單層膜材料分析 52
4.4.2 四層抗反射膜設計與沉積 52
4.5 高溫高濕環境測試 54
4.5.1 表面活化官能基之於附著性的影響 54
4.5.2 不同氧化態附著層之於附著性的影響 57
第五章 結論 60
參考文獻 61

參考文獻 [1] Bowden, Mary Ellen. Leo Baekeland. Chemical Achievers: the human face of the chemical sciences. Philadelphia, PA: Chemical Heritage Foundation. 1997.
[2] Staudinger, H. Über Polymerisation., Ber. Deut. Chem. Ges., Vol. 53, Issue 6, pp. 1073-1085, 1920.
[3] Jerry Kang: Shipments of Flexible AMOLED Panels Expected to Exceed Rigid Panels by 2020, Aug. 13, 2018. from: https://technology.ihs.com/.
[4] Automotive Electronic Systems Growth Strongest Through 2021, Nov. 8, 2017. from: http://www.icinsights.com/.
[5] U. Schulz, B. Schallenberg, N. Kaiser. “Antireflection coating design for plastic optics”, Applied Optics, Vol. 41, Issue 16, pp. 3107-3110, 2002.
[6] U. Schulz, B. Schallenberg, N. Kaiser. “Symmetrical periods in antireflective coatings for plastic optics”, Applied Optics, Vol. 42, Issue 7, pp. 1346-1351, 2003.
[7] U. Schulz, “Review of modern techniques to generate antireflective properties on thermoplastic polymers”, Applied Optics, Vol. 45, Issue 7, pp. 1608-1618, 2006.
[8] U. Schulz, K. Lau, N. Kaiser. “Antireflection coating with UV-protective properties for polycarbonate”, Applied Optics, Vol. 47, Issue 13, pp. C83-C87, 2008.
[9] M. Zayat, P. Garcia-Parejo and D. Levy. “Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating”, Chem. Soc. Rev., Vol. 36, Issue 8, pp. 1270-1281, 2007.
[10] H.S. Choi, V.V. Rybkin, V.A. Titov, T.G. Shikova, T.A. Ageeva. “Comparative actions of a low pressure oxygen plasma and an atmospheric pressure glow discharge on the surface modification of polypropylene”, Surface & Coatings Technology, Vol. 200, Issues 14-15, pp. 4479-4488, 2006.
[11] O.J. Kwon, S.W. Myung, C.S. Lee, H.S. Choi., “Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas (Ar/O2) atmospheric pressure plasma”, Journal of Colloid and Interface Science, Vol. 295, Issue 2, pp. 409-416, 2006.
[12] D. Hegemann, “Plasma polymer deposition and coatings on polymers”, Comprehensive Materials Processing, Vol. 4, pp. 201-228, 2014.
[13] D. Hegemann, H. Brunner, C. Oehr, “Plasma treatment of polymers for surface and adhesion improvement”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 208, pp. 281-286, 2003.
[14] F. Awaja, M. Gilbert, G. Kelly, B. Fox, P.J. Pigram, “Adhesion of polymers”, Progress in Polymer Science Vol. 34, Issue 9, pp. 948-968, 2009.
[15] A. Vesel, M. Mozetic, “Surface modification and aging of PMMA polymer by oxygen plasma treatment”, Vacuum, Vol. 86, Issue 6, pp. 634-637, 2012.
[16] O. J. Kwon, S.W. Myung, S. Tang, N. Lu, H.S. Choi, “Surface characteristics of polypropylene film treated by an atmospheric pressure plasma”, Surface and Coatings Technology, Vol. 192, Issue 1, pp. 1-10, 2005.
[17] U. Schulz, P. Munzert, N. Kaiser., “Surface modification of PMMA by DC glow discharge and microwave plasma treatment for the improvement of coating adhesion”, Surface and Coatings Technology, Vol. 142-144, pp. 507-511, 2001.
[18] C. C. Lee, J. C. Hsu, C. C. Jaing, “Optical coatings on polymethylmeth-acrylate and polycarbonate”, Thin Solid Films, Vol. 295, Issues 1-2, pp. 122-124, 1997.
[19] Langmuir, I., “Oscillations in Ionized Gases”, Proceedings of the National Academy of Sciences of the United States of America, Vol. 14, Issue 8, pp. 627-637, 1928.
[20] Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Second Edition, Society of Photo Optical, 2012.
[21] F.Khelifa., S.Ershov. et al., “Free-radical-induced grafting from plasma polymer surfaces”, Chem. Rev., Vol. 116, pp. 3975−4005, 2016.
[22] Sabu Thomas, Miran Mozetic, Uros Cvelbar, Petr Spatenka, K.M. Praveen, Non-Thermal Plasma Technology for Polymeric Materials, First Edition, Elsevier, 2018.
[23] D. Hegemann, Brunner, H., & Oehr, C., “Plasma treatment of polymers for surface and adhesion improvement”, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 208, pp. 281–286, 2003.
[24] Vesel, A., & Mozetic, M., “Surface modification and ageing of PMMA polymer by oxygen plasma treatment”, Vacuum, Vol. 86, Issue 6, pp. 634–637, 2012.
[25] H. Lim, Y. Lee, S. Han, et al., “Surface treatment and characterization of PMMA, PHEMA, and PHPMA”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces and Films, Vol. 19, Issue 4, pp. 1490-1496, 2001.
[26] J. E. Klemberg-Sapieha, L. Martinu, N.L.S. Yamasaki, C. W. Lantman, “Tailoring the adhesion of optical films on polymethyl-methacrylate by plasma-induced surface stabilization”, Thin Solid films, Vol. 476, Issue 1, 2005.
[27] 王宣文, “以電漿表面預處理法在塑膠基板上製鍍抗反射膜”, 國立中央大學, 碩士論文, 2005.
[28] T. Takahashi, etal., “Depositing highly adhesive optical thin films on acrylic substrates”, Applied Optics, Vol.53, Issue 4, pp. A287-A290, 2014.
[29] Cui, L., Ranade, A. N., Matos, M. A., Dubois, G., & Dauskardt, R. H., “Improved Adhesion of Dense Silica Coatings on Polymers by Atmospheric Plasma Pretreatment”. ACS Applied Materials & Interfaces, Vol. 5, Issue 17, pp. 8495–8504, 2013.
[30] K. L. Mittal., “The role of the interface in adhesion phenomena”, Polymer Engineering and Science, Vol. 17, Issue 7, pp. 467-473, 1997.
[31] L. H. Sharpe., “The Interphase in Adhesion”, The Journal of Adhesion, Vol. 4, Issue 1, pp. 51-64, 1972.
[32] D. K. Maurya, A. Sardarinejad, K. Alameh, “Recent Developments in R.F. Magnetron Sputtered Thin Films for pH Sensing Applications—An Overview”, Coatings, Vol. 4, Issue 4, pp. 756-771, 2014.
[33] 邱繼暐, 直流磁控濺鍍輔以氧離子助鍍光學薄膜於塑膠基板, 國立中央大學, 碩士論文, 2004.
[34] S. Berg, T. Nyberg, “Fundamental understanding and modeling of reactive sputtering”, Thin Solid Films, Vol. 476, Issue 2, pp. 215-230, 2005.
[35] H. Kawai, F. Kanega, H. Kohkame, “Novel Acrylic Resin for Injection Molded Precision Lenses”, Proc. SPIE 0896, Repubilcation and Molding of Optical Components, 1988.
[36] ASTM D570-98, Standard Test Method for Water Absorption of Plastics, ASTM International, West Conshohocken, PA, 2018.
[37] 李正中,薄膜光學與鍍膜技術,藝軒圖書第八版,201,新北市。
[38] Brian C.Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, Second Edition, CRC Press, 2011.
[39] G. Ertl, J. Kuppers, Low Energy Electrons and Surface Chemistry, Vch Pub, 1985.
[40] L. Mahoney., D. Burtner. and D. Siegfried, “A New End-Hall Ion Source with Improved Performance”, Veeco Instruments Inc., Society of Vacuum Coaters, 49th Annual Technical Conference Proceedings, pp. 706-711, 2006.
指導教授 郭倩丞 審核日期 2019-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明