博碩士論文 106226601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.142.119.241
姓名 范天達(Pham, Tien Dat)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率
(FEM analysis of diffraction efficiency in multilayer dielectric diffraction gratings applied in Spectral Beam Combining)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯透明導電膜與其成長模型之研究
★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
★ 化學氣相沉積石墨烯透明導電膜之製程與分析★ 應用光學導納軌跡法提升太陽能選擇性吸收膜之光熱轉換效率研究
★ 單晶銅成長石墨烯及其可撓性之研究★ 高反射多層膜抗雷射損傷閥值之研究
★ 高穿透類鑽碳膜之研究★ 裝備具有低光斑的抗眩光膜層
★ 透鏡品質檢測基於四波橫向剪切干涉儀★ 利用介電係數趨近零材料設計層狀寬帶超穎吸收膜
★ 抑制層對降低電漿輔助原子層沉積二氧化鉿薄膜結晶之研究★ 製備超親水聚合膜在聚碳酸酯表面研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文介紹了一種完全基於有限元方法的多層介質衍射光栅(MDGs)的特性和評估方法,該方法是工程領域的一種重要而高效的工具。本研究的目的是建立多層介質反射光栅高效率的要求,以滿足規定的效能標準。採用多參數計算方法對不同形狀光栅的繞射效率和電場分佈進行了評估。成功地將電場分佈應用於各種類型的衍射光栅形狀,從光栅形狀和入射光參數兩方面確定了最佳的衍射光栅參數。
結果表明,光栅形狀對兩種偏振態的繞射效率都有影響。結果還表明,數值計算的COMSOL是預測MDGs繞射效率的合適工具。提出了一種基於參數掃描的高繞射效率光栅MDGs結構。結果表明,通過改變多層膜結構,提高了MDGs的繞射效率。
利用COMSOL和Essential Macleod,提出了一種組合有限元法(FEM)和薄膜優化方法。
摘要(英) This thesis presents the work on the characterization and evaluation of a MDGs based wholly on finite element method, which acts as an important and efficiency tool in engineer field. The aim of the study was to establish requirements for the high efficiency of multilayer dielectric reflection grating to satisfy stated performance criteria. Several parameter calculations were employed to assess diffraction efficiency and electric field distribution of various grating shapes. Electric field distribution was successfully employed for various types of diffraction grating shapes to determine the optimal diffraction grating parameters in terms of grating shapes and incident light parameters.
The results obtained have demonstrated that gratings shapes affect the diffraction efficiencies for both polarization state. The results also showed that the numerical COMSOL is a suitable tool for the prediction of diffraction efficiency of MDGs. A MDGs structure is proposed for the high diffraction efficiency grating based on parameter sweeping using COMSOL Multiphysics. The outcomes show that by changing multilayer structure, the diffraction efficiency of MDGs is improved.
A combined Finite Element Method FEM and thin films optimization have been developed using COMSOL and Essential Macleod.
關鍵字(中) ★ MDGs
★ COMSOL
★ 有限元法
★ 繞射
★ 光柵
★ 衍射
關鍵字(英) ★ MDGs
★ COMSOL
★ Finite Element Method
★ Beam-combining
★ Gratings
★ Diffraction
論文目次 中文摘要 i
Abstract i
ACKNOWLEDGEMENT ii
List of figures v
List of tables viii
List of Abbreviations ix
CHAPTER 1 1
INTRODUCTION 1
CHAPTER 2 4
LITERATURE REVIEW 4
2.1. Historical overview 4
2.2. Papers review 7
2.3. Basic concepts 12
2.3.1. Diffraction theory 12
2.3.2. Littrow mounting 15
2.3.3. Beam quality factor 16
2.3.4. Angular dispersion 17
2.3.5. Effective index 18
2.3.6. Laser-induced Damage Threshold 21
2.3.7. Multilayer High-reflectance Coatings 22
CHAPTER 3 24
THE FINITE ELEMENT METHOD 24
3.1. Finite element modeling 24
3.2. COMSOL Multiphysics® [38,46] 25
3.3. Essential Macleod 27
3.4. MDGs structure description 27
CHAPTER 4 35
RESULTS AND DISCUSSIONS 35
4.1. Different grating shapes 35
4.2. Optimization process 49
CHAPTER 5 62
CONCLUSIONS 62
References 64
參考文獻 [1] Madasamy, P., Jander, D., Brooks, C., Loftus, T., Thomas, A., Jones, P. and Honea, E. (2009), “Dual-Grating Spectral Beam Combination of High-Power Fiber Lasers”, IEEE Journal of Selected Topics in Quantum Electronics, 15(2), pp.337-343.
[2] Zhao, Y., Sun, F., Tong, C., Shu, S., Hou, G., Lu, H., Zhang, X., Wang, L., Tian, S. and Wang, L. (2018), “Going beyond the beam quality limit of spectral beam combining of diode lasers in a V-shaped external cavity”, Optics Express, 26(11), p.14058.
[3] Chen, F., Ma, J., Wei, C., Zhu, R., Zhou, W., Yuan, Q., Pan, S., Zhang, J., Wen, Y. and Dou, J. (2017), “10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters”, Optics Express, 25(26), p.32783.
[4] Chen, F., Ma, J., Zhu, R., Yuan, Q., Zhou, W., Su, J., Xu, J. and Pan, S. (2017), “Coupling efficiency model for spectral beam combining of high-power fiber lasers calculated from spectrum”, Applied Optics, 56(10), p.2574.
[5] Loftus, T., Thomas, A., Hoffman, P., Norsen, M., Royse, R., Liu, A. and Honea, E. (2007), “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications”, IEEE Journal of Selected Topics in Quantum Electronics, 13(3), pp.487-497.
[6] Hu, M., Zheng, Y., Yang, Y., Chen, X., Liu, K., Zhao, C., Wang, J., Qi, Y., He, B. and Zhou, J. (2017), “Nanosecond double-pulse fiber laser with arbitrary sub-pulse combined based on a spectral beam combining system”, Optics & Laser Technology, 90, pp.22-26.
[7] Zhang, Y. and Zhang, B. (2010), “Analysis of beam quality for the laser beams after spectral beam combining”, Optik, 121(13), pp.1236-1242.
[8] Rui Zhang, R., Yufei Wang, Y., Yejin Zhang, Y., Zhigang Feng, Z., Fan Qi, F., Lei Liu, L. and Wanhua Zheng, W. (2014), “Broadband and polarization-insensitive subwavelength grating reflector for the near-infrared region”, Chinese Optics Letters, 12(2), pp.20502-20504.
[9] Mehrotra, K., Taylor, B., Kozlov, A., Papernov, S. and Lambropoulos, J. (2017), “Nano-indentation and laser-induced damage testing in optical multilayer-dielectric gratings”, Applied Optics, 56(9), p.2494.
[10] Guan, H., Jin, Y., Liu, S., Kong, F., Du, Y., He, K., Yi, K. and Shao, J. (2013), “Broadband trapeziform multilayer dielectric grating for femtosecond pulse compressor: design, fabrication, and analysis”, Laser Physics, 23(11), p.115301.
[11] Vial, B., Zolla, F., Nicolet, A., Commandré, M. and Tisserand, S. (2012), “Adaptive perfectly matched layer for Wood’s anomalies in diffraction gratings”, Optics Express, 20(27), p.28094.
[12] Bao, G., Chen, Z. and Wu, H. (2005), “Adaptive finite-element method for diffraction gratings”, Journal of the Optical Society of America A, 22(6), p.1106.
[13] Koechner, W. (2006), Solid-state laser engineering, chapter 01, Springer, New York.
[14] Bertolotti, M. (2005), The history of the laser, chapter 02, Bristol: Institute of Physics Pub.
[15] Witteman, W. (2013), CO2 laser, chapter 01, Springer-Verlag Berlin An.
[16] Shay, T., Baker, J., Sanchez, A., Robin, C., Vergien, C., Zeringue, C., Gallant, D., Lu, C., Pulford, B., Bronder, T. and Lucero, A. (2009), “High-power phase locking of a fiber amplifier array”, Fiber Lasers VI: Technology, Systems, and Applications, 7195, pp. 127-130.
[17] Bai, G., Shen, H., Yang, Y., Zhao, X., Zhang, J., Zhang, H., Qi, Y., He, B. and Zhou, J. (2018), “Theoretical analysis of beam quality degradation in spectral beam combining of fiber laser array with beam deviation”, Optics & Laser Technology, 105, pp.281-287.
[18] Yin, S., Zhang, B. and Dan, Y. (2011), “Propagation characteristics of the Yb-doped fiber lasers after spectral beam combining by the VBGs”, Optics Communications, 284(1), pp.306-311.
[19] Cho, H., Lee, K., Kim, S., Lee, J. and Kim, H. et al. (2018), “Analysis on Design and Fabrication of High-diffraction-efficiency Multilayer Dielectric Gratings”, Current Optics and Photonics, 2(2), pp.125-133.
[20] Li, H. and Wang, B. (2017), “Three-Layer Grating With the Enhanced Efficiency and Angular Bandwidth”, IEEE Photonics Journal, 9(1), pp.1-7.
[21] Zhan, S., Wu, Z., Hu, J., Zhang, J., Wang, P., You, J. and Wen, J. (2018), “Investigation on ultimate efficiency of spectral beam combining based on an external cavity”, Optik, 158, pp.1519-1532.
[22] Huang, H., Kong, F., Xia, Z., Jin, Y., Li, L. et al. (2018), “Femtosecond-laser-induced damage initiation mechanism on metal multilayer dielectric gratings for pulse compression”, Optical Materials, 75, pp.727-732.
[23] Cao, H., Wu, J., Yu, J. and Ma, J. (2018), “High-efficiency polarization-independent wideband multilayer dielectric reflective bullet-alike cross-section fused-silica beam combining grating”, Applied Optics, 57(4), pp.900-905.
[24] Li, L., Liu, Q., Chen, J., Wang, L., Jin, Y., Yang, Y. and Shao, J. (2018), “Polarization-independent broadband dielectric bilayer gratings for spectral beam combining system”, Optics communications, pp.97-103.
[25] Palmer, C. and Loewen, E. (2005), Diffraction grating handbook, chapter 02, N.Y.: Newport Corporation, Rochester.
[26] Loftus, T., Thomas, A., Hoffman, P., Norsen, M., Royse, R., Liu, A. and Honea, E. (2007), “Spectrally Beam-Combined Fiber Lasers for High-Average-Power Applications”, IEEE Journal of Selected Topics in Quantum Electronics, 13(3), pp.487-497.
[27] Clausnitzer, T., Kämpfe, T., Kley, E., Tünnermann, A., Peschel, U., Tishchenko, A. and Parriaux, O. (2005), “An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings”, Optics Express, 13(26), p.10448.
[28] Clausnitzer, T., Kämpfe, T., Kley, E., Tünnermann, A., Tishchenko, A. and Parriaux, O. (2007), “Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting”, Applied Optics, 46(6), p.819.
[29] Liu, Z., Zheng, Y., Pan, F., Lin, Q., Ma, P. and Wang, J. (2016), “Investigation of laser induced damage threshold measurement with single-shot on thin films”, Applied Surface Science, 382, pp.294-301.
[30] Zhong, M., Yang, G., Yan, Z., Yang, L. and Xiang, X. (2016), “Effect of γ-ray irradiation on the optical property and laser damage performance of silica”, Optik, 127(8), pp.3853-3857.
[31] Boling, N., Crisp, M. and Dubé, G. (1973), “Laser Induced Surface Damage”, Applied Optics, 12(4), p.650.
[32] Gallais, L. and Commandré, M. (2013), “Laser-induced damage thresholds of bulk and coating optical materials at 1030  nm, 500  fs”, Applied Optics, 53(4), p.A186-188.
[33] Kong, F., Jin, Y., Huang, H., Zhang, H., Liu, S. and He, H. (2015), “Laser-induced damage of multilayer dielectric gratings with picosecond laser pulses under vacuum and air”, Optics & Laser Technology, 73, pp.39-43.
[34] Macleod, H. (2018), Thin-film optical filters, chapter 02-05, 5th ed, CRC Press, Taylor & Francis, pp.188-190.
[35] Jiang, X., Li, P., Lv, J. and Zheng, W. (2010), “An adaptive finite element PML method for the elastic wave scattering problem in periodic structures”, Numerical Analysis, 22 (5), pp 1846-1507.
[36] Solano, M., Faryad, M., Lakhtakia, A. and Monk, P. (2018), “Comparison of rigorous coupled-wave approach and finite element method for photovoltaic devices with periodically corrugated metallic backreflector”, Optical Society of America, 31(10), pp.2275-2284.
[37] Menzel, R. (2007), Photonics, chapter 02, Springer-Verlag Berlin Heidelberg, New York.
[38] Dickinson, E., Ekström, H. and Fontes, E. (2013), “COMSOL Multiphysics®: Finite element software for electrochemical analysis. A mini-review.”, Electrochemistry communications, 40, pp.71-74.
[39] Xu, C., Qiang, Y., Zhu, Y., Shao, J., Fan, Z. and Han, J. (2010), “Effects of deposition parameters on laser-induced damage threshold of Ta2O5 films”, Optics & Laser Technology, 42(3), pp.497-502.
[40] Sheng-bao, Z., Shang-hong, Z., Xing-chun, C., Zhuo-liang, W. and Lei, S. (2010), “Spectral beam combining of fiber lasers based on a transmitting volume Bragg grating”, Optics & Laser Technology, 42(2), pp.308-312.
[41] El-Agmy, R. and Al-Hosiny, N. (2017), “Power scaling of end-pumped Nd:YLF lasers, modeling and experiments”, Optik, 140, pp.584-591.
[42] Huang, X., Lan, J., Lin, Z., Cui, S., Wang, Y., Xu, B., Xu, H., Cai, Z., Xu, X. and Xu, J. (2016), “Power scaling and wavelength tuning of diode-pumped Nd:LSO laser at 1.35 μm”, Optical Materials, 58, pp.102-106.
[43] Zhang, W., Duan, X. and Li, L. (2018), “High power Ho:SSO laser resonantly pumped by a FBG-locked Tm fiber laser at 1940.3 nm”, Optik, 175, pp.340-343.
[44] Luo, S., Yan, X., Cui, Q., Xu, B., Xu, H. and Cai, Z. (2016), “Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm”, Optics Communications, 380, pp.357-360.
[45] Du, J., Yu, Y., An, X., Shang, J., Lei, J., Jiang, J., Jiang, L., Lv, W., Fan, G. and Gao, Q. (2018), “60 mm-aperture high average output power Nd:YAG composite ceramic disk laser”, Optik, 172, pp.197-202.
[46] Pryor, R. (2012), Multiphysics modeling using COMSOL 4, chapter 02, Va: Mercury Learning and Information, Dulles.
指導教授 郭倩丞(Kuo, Chien-Cheng) 審核日期 2019-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明