博碩士論文 106226602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.149.214.32
姓名 Nguyen Thi Anh Nguyet(Nguyen Thi Anh Nguyet)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 P型氮化硼的導電性
(Electrical conductance of P-type Boron Nitride)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) CHINESE ABSTRACT
深紫外線 [Deep Ultraviolet (DUV), λ ≤ 290nm] 發光二極體 (light-emitting diode, LED) 已經在各種應用中逐漸取代傳統的紫外線光源。然而,DUV LED的外部量子效率 (external quantum efficiency, EQE) 依然難以超過10%,這主要是因為DUV LED的p型導電層為摻雜鎂 (Mg-doped) 的AlxGa1-xN,而p型AlxGa1-xN受體的活化能很高(170 mev ~ 510 meV),難以產生足夠的電洞p型氮化硼(BN高能隙(~ 6 eV),也有很低的受體活化能 (~ 31 meV),可以同時展現高穿透、高導電的特性,很適合用在DUV LED。為了研究p-BN的導電性,我們嘗試不同的金屬材料與退火條件也調整了p-BN的磊晶結構,並利用利用霍爾效應比較p-BN與p-GaN的導電性。我們發現,以低壓成長的3-nm InGaN接觸層,能有效降低p-BN界面的接觸電阻。
摘要(英) ENGLISH ABSTRACT
Ultraviolet (UV) light-emitting diodes (LEDs) have replaced conventional UV light sources in various applications. Nevertheless, deep-ultraviolet light-emitting diodes (DUV LEDs, λ ≤ 290nm) are still intensively investigated because of its low EQE remaining below 10% [2]. In particular, AlGaN alloys have been the most common material for DUV LEDs. In spite of continuous efforts to develop an AlGaN DUV LED, its EQE is still typically below 10%. The limitation roots in the low conductivity of p-AlxGa1-xN as its activation energy for Mg acceptor is very high (170meV to 510meV) [6]. The high activation energy of Mg acceptor leads to low hole injection efficiency. Among many approaches have been utilized to enhance DUV LEDs’s EQE, Boron Nitride (BN) has emerged as a promising candidate to substitute p-type AlGaN in DUV LEDs. Due to its layered structure, BN has high chemical and thermal stability. Besides that, with large bandgap (~6eV), it becomes a suitable material to be used as an electron blocking layer by causing a large conduction band offset and a smaller valence band offset with other III-V materials [8,9]. The most outstanding property of BN is the dramatic reduction of Mg acceptor energy level, which can be as low as 30meV [11]. It will subsequently lower the resistivity of the p-type BN layer and also increase the hole concentration efficiency. These advantages are expected to enhance the EQE of the DUV LEDs. To investigate the electrical property of p-BN, we tried to fabricate ohmic contact on p-BN by different metallizatione schemes, annealing conditions, contact layers. The temperature-dependence Hall effect measurements are conducted to estimate the activation energy of acceptors of p-type GaN, with the attempt to attain similar results from p-BN. Our studies showed that the growth pressure of the InGaN contact layer plays an important role on the contact check resistance of the Au/Ni/p-BN interface.
關鍵字(中) ★ P型氮化硼 關鍵字(英) ★ Electrical conductance of P-type Boron Nitride
論文目次 TABLE OF CONTENTS
CHINESE ABSTRACT i
ENGLISH ABSTRACT ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
EXPLANATION OF ABBREVIATIONS ix
Chapter 1
INTRODUCTION 1
1.1. Motivation 1
1.1.1. DUV LEDs: materials and applications 1
1.1.2. The issues of AlGaN-based DUV LEDs 3
1.1.3. The potential substitute for p-type AlGaN in DUV LEDs: Boron Nitride 6
1.1.4. Motivations and thesis overview 9
1.2. Activation energy – electrical conductance factor 9
1.2.1. Intrinsic and Extrinsic semiconductor 10
1.2.2. The activation energy definition 13
1.2.3. The temperature dependence of carrier concentration of semiconductor 14
1.3. Hall effect measurement 15
1.3.1. The basic principles 15
1.3.2. Van der Pauw resistivity measurement 17
1.3.3. Temperature-dependeny Hall effect measurement 19
Chapter 2
EXPERIMENT 21
2.1. Sample preparation 21
2.1.1. Double cleaning process 21
2.1.2. Metal deposition 21
2.1.3. Annealing process 22
2.2. Measurement 22
2.2.1. Hall measurement and Access HL5500 Hall system 22
Chapter 3
RESULTS AND DISCUSSIONS 26
3.1. P-type GaN 26
3.1.1. The effect of annealing temperature 27
3.1.2. The estimation of activation energy 30
3.2. P-type BN 34
3.2.1 The effect of InGaN contact layer 35
3.2.2. The effect of other processing parameters 39
Chapter 4
CONCLUSIONS AND FUTURE WORKS 42
4.1. Conclusions 42
4.2. Future works 42
REFERENCES 43
參考文獻 REFERENCES
(1) Kirsten Pisto, Ultra awesome: Ultraviolet eyesight in animals, Woodland park Zoo blog, 2012
(2) M. Kneissl, J. Rass, A brief review of III – Nitrides UV emitter Technologies and their applications, III – Nitride Ultraviolet Emitters, Springer series in Materials Science 227, Springer International Publishing, Switzerland, 2016.
(3) Yoshihiko Muramoto, Masahiro Kimura, Suguru Nouda, “Development and future of ultraviolet light – emitting diodes: UV – LED will replace the UV lamp”, Semicond. Sci Technol. 29, 2014.
(4) M. Kneissl, et al, “Deep Ultraviolet LEDs: from material research to real world applications”, IEEE, 2015.
(5) Michael S. Shur and Remis Gaska, “Deep – Ultraviolet Light – Emitting Diodes”, IEEE Trans. Electron Devices, Vol 57, No 1, January 2010.
(6) H. X. Jiang and J. Y. Lin, “Hexagonal boron nitride for deep ultraviolet photonic devices”, Semicond. Sci Technol. 29, 2014.
(7) Natalia Izymskaya, et al, “Recent Development of Boron Nitride towards Electronic Applications”, Advance Electronic Material, 1600485, 2017.
(8) Kenji Watanabe, Takashi Taniguchi And Hisao Kanda, “Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal Boron Nitride single crystal”, Nature Materials, Vol. 3, Pg. 404 – 409, 2004.
(9) Kenji Watanabe, et al, “Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride”, Nature Photonics, Vol. 3, Pg. 591 – 591, 2009.
(10) K. X. Dong, et al, “Characteristic of deep ultraviolet AlGaN – based light emitting diodes with p – hBN layer”, Physica E, Vol 75, pg. 52 – 55, 2016.
(11) R. Dahal, et al, “Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material”, Applied Physics Letters, Vol 98, 211110, 2011.
(12) S. Majety, et al, “Epitaxial growth and demonstration of hexagonal BN/AlGaN p-n junctions for deep ultraviolet photonics”, Applied Physics Letters, Vol 100, 061121, 2012.
(13) Donald A. Neamen, Semiconductor Physics and Devices Basic Principles,Chapter. 4, McGraw – Hill Companies, New York, 2003
(14) HL5500PC Hall effect Measurement System – Opearating Manual, Accent.
(15) M Kneissl, et al, “Advances in group III-nitride-based deep UV light-emitting diode technology”, Semicond. Sci. Technol, Vol 26, pg. 1 – 6, 2011
(16) Deborah D. L. Chung, Multifunctional Cement-Based Materials, chapter 2, Marcel Dekker, New York, 2003.
(17) D. Mistele, et la, “Investigation of Ni/Au-contacts on p-GaN annealed in different atmospheres”, Journal of Crystal Growth, Vol. 230, pg. 564 – 568, 2001.
(18) Ho Won Jang, Soo Young Kim and Jong-Lam Lee, “Mechanism for Ohmic contact formation of oxidized Ni/Au on p-type GaN”, Journal of Applied Physics, Vol 94, pg. 1748 – 1751, 2003.
(19) I. Chary, et la, “Low resistance ohmic contacts to p-type GaN and AlGaN”, Mater. Res. Soc. Symp. Proc, Vol. 1108, 1108-A09-30, 2009.
(20) S. Nikishin, et la, “Mechanism of carrier injection in (Ni/Au)/p-AlxGa1-xN:Mg (0≤x≤0.1) Ohmic contacts”, Applied Physics Letters, Vol. 95, 163502, 2009.
(21) Li-Chien Chen, et la, “Microstructural investigation of oxidized ni/au ohmic contact to p-type gan”, Journal of Applied Physics, Vol.86, Number. 7 , pg. 3826 – 3832, 1999.
(22) Jin-Kuo Ho, et la, “Low-resistance ohmic contacts to p-GaN achieved by the oxidation of Ni/Au films ”, Journal of Applied Physics, Vol.86, Number. 8 , pg. 4491 – 4497, 1999.
(23) W. Gotz, et la, “Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition”, Applied Physics Letters, Vol. 68, pg. 667 – 669, 1996.
(24) W. Gotz, et la, “Hall-effect characterization of III-V nitride semiconductors for high efficiency light emitting diodes”, Materials Sciene and Engineering, B59, pg. 211 – 217, 1999.
(25) Peter Kozodoy, “”, Journal of Applied Physics, Vol. 87, Number 4, pg. 1832 – 1835, 2000
(26) Yun-Li Li and Heng Liu (2004), III-nitride based on semiconductor device with low-resistance ohmic contacts [online], viewed 16 March 2019, from: .
(27) Ja-Soon Jang, et la, “Formation of low-resistance transparent Ni/Au ohmic contacts to a polrization field-induced p-InGaN/GaN superlattice”, Semicond. Sci. Technol. Vol. 21, pg. L37 – L39, 2006.
(28) SeoulViosys company website, EPI Growth Mechanism [online], viewed 16 March 2019, from:< http://www.seoulviosys.com/en/technology/chip/>.
(29) Dong-Joon Kim, et la, “Effect of Growth pressure on Indium Incorporation During the Growth of InGaN by MOCVD”, Journal of ELECTRONIC MATERIALS, Vol. 30, No. 2, pg. 99 – 102, 2001.
(30) L. Zhou, et la, “Low resistance Ti/Pt/Au ohmic contacts to p-type GaN”, Applied Physics Letters, Vol. 76, Number. 23, pg. 3451 – 3453, 2000
指導教授 賴昆佑 Le Vu Tuan Hung(Kun-Yu Lai Le Vu Tuan Hung) 審核日期 2019-4-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明