博碩士論文 106229003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.233.217.242
姓名 蔡松翰(Sung-Han Tsai)  查詢紙本館藏   畢業系所 天文研究所
論文名稱
(Stellar Evolution of Pop III and Extreme Metal Poor Binaries)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-23以後開放)
摘要(中) 現代宇宙學模擬指出由於恆星形成雲的碎裂,第一代大質量恆星系統可能是由多顆恆星所組成。這些恆星系統大部分發展成為雙星系統而非單恆星系統。在彼此很靠近的雙星系統中,兩顆恆星經常發生交互作用,這會導致顯著的質量交換過程進而影響兩顆恆星的命運。在本篇論文中,我將呈現我們使用一維恆星演化模擬程式MESA 的運行結果,並討論他們的物理特性。我們發現三種不同類型的具有相互作用的雙星系
統:共有包層、穩定吸積、碰撞事件。而我們的模擬程式, MESA, 只能夠處理穩定吸積的情況。為了計算具有相互作用的雙星系統的輻射能力,我們假設一個簡單的吸積盤模型來做近似並計算從中產生的游離光子。結果顯示質量傳輸過程可以顯著地影響雙星系統的演化過程及他們的命運。因此,在早期宇宙中,這些雙星系統的反饋可能對宇宙產生深遠的影響。
摘要(英) Modern cosmological simulations suggest that one massive Pop-III star might form into multi-pole stars due to the fragmentations of the star-forming cloud. Most of these stars are likely to develop into binaries instead of single isolated stars. In the case of close
binaries, the interaction between two stars frequently occurs. It leads to drive a significant mass-transfer even affect the fate of the two stars. In paper, I show the results of our stellar evolution models of Pop-III/EMP binaries with MESA and discuss their physical properties. We find three different types of interacting binaries, common envelope, stable accretion, merger event. Our simulation code, MESA, can only deal with stable accretion cases. To calculate the radiative feedback of interacting binaries, we use a simple accretion disk model to approximate the accretion disk and calculate the ionizing photons from it. The results suggest that mass-transfer can dramatically affect the evolution track and the fate of these binaries. Therefore, the stellar feedback of Pop-III/EMP binaries may have a profound impact on the early Universe.
關鍵字(中) ★ 雙星系統
★ 恆星演化
★ 輻射反饋
★ 早期宇宙
關鍵字(英) ★ Binary system
★ Stellar evolution
★ Radiative feedback
★ Early Universe
論文目次 摘要 xi
Abstract xiii
Contents xv
1 Introduction 1
2 Numerical Approaches 3
2.1 MESA . . . . . . . 3
2.2 Binary Models . . . . . . . 3
2.3 Roche-lobe Overflow . . . . . . . 4
2.4 Accretion Disk . . . . . . . 5
2.5 Ionizing Photons . . . . . . . 6
3 Result 9
3.1 Binary Evolution Models . . . . . . . 9
3.1.1 Model Database . . . . . . . 9
3.1.2 Stellar Evolution . . . . . . . 10
3.1.3 Mass Transfer Processes . . . . . . . 14
3.2 Luminosity and Ionizing photons . . . . . . . 15
3.2.1 Populations of Binaries . . . . . . . 15
3.2.2 Binary properties and ionizing photon yield . . . . . . . 17
3.2.3 Disk Effect . . . . . . . 19
4 Discussion 21
4.1 Stellar Wind Accretion . . . . . . . 21
4.2 Physics of Mass Transfer . . . . . . . 21
4.3 Ionizing Photons and Stellar Mass Relations . . . . . . . 24
4.4 Comparison with Previous Work . . . . . . . 26
4.5 Model Refinement . . . . . . . 26
5 Conclusion 29
Bibliography 31
參考文獻 [1] D. Raghavan, H. A. McAlister, T. J. Henry, D. W. Latham, G. W. Marcy, B. D. Mason, D. R. Gies, R. J. White, and A. Theo, “A survey of stellar families: Multiplicity of solartype stars,” The Astrophysical Journal Supplement Series, vol. 190, no. 1, p. 1, 2010.
[2] M. Janson, F. Hormuth, C. Bergfors, W. Brandner, S. Hippler, S. Daemgen, N. Kudryavtseva, E. Schmalzl, C. Schnupp, and T. Henning, “The astralux large m-dwarf multiplicity survey,” The Astrophysical Journal, vol. 754, no. 1, p. 44, 2012.
[3] L. Scientific, B. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, et al., “Gw170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2,” Physical Review Letters, vol. 118, no. 22, p. 221 101, 2017.
[4] B. P. Abbott, R. Abbott, T. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari, V. Adya, et al., “Gw170817: Observation of gravitational waves from a binary neutron star inspiral,” Physical Review Letters, vol. 119, no. 16, p. 161 101, 2017.
[5] S.-C. Yoon and N. Langer, “Presupernova evolution of accreting white dwarfs with rotation,” Astronomy & Astrophysics, vol. 419, no. 2, pp. 623–644, 2004.
[6] T. Tauris and E. Van Den Heuvel, “Formation and evolution of compact stellar x-ray sources,” Compact stellar X-ray sources, vol. 39, pp. 623–665, 2006.
[7] C. Clarke and J. Pringle, “Star–disc interactions and binary star formation,” Monthly Notices of the Royal Astronomical Society, vol. 249, no. 4, pp. 584–587, 1991.
[8] P. Kroupa, “Inverse dynamical population synthesis and star formation,” Monthly Notices of the Royal Astronomical Society, vol. 277, no. 4, pp. 1491–1506, 1995.
[9] A. Heger and S. Woosley, “Nucleosynthesis and evolution of massive metal-free stars,” The Astrophysical Journal, vol. 724, no. 1, p. 341, 2010.
[10] M. J. Turk, T. Abel, and B. O’Shea, “The formation of population iii binaries from cosmological initial conditions,” Science, vol. 325, no. 5940, pp. 601–605, 2009.
[11] A. Stacy, T. H. Greif, and V. Bromm, “The first stars: Formation of binaries and small multiple systems,” Monthly Notices of the Royal Astronomical Society, vol. 403, no. 1, pp. 45–60, 2010.
[12] T. Greif, V. Springel, S. White, S. Glover, P. Clark, R. Smith, R. Klessen, and V. Bromm, “Simulations on a moving mesh: The clustered formation of population iii protostars,” arXiv preprint arXiv:1101.5491, 2011.
[13] K.-J. Chen, V. Bromm, A. Heger, M. Jeon, and S. Woosley, “Cosmological impact of population iii binaries,” The Astrophysical Journal, vol. 802, no. 1, p. 13, 2015.
[14] B. Paxton, L. Bildsten, A. Dotter, F. Herwig, P. Lesaffre, and F. Timmes, “Modules for experiments in stellar astrophysics (mesa),” The Astrophysical Journal Supplement Series, vol. 192, no. 1, p. 3, 2010.
[15] B. Paxton, M. Cantiello, P. Arras, L. Bildsten, E. F. Brown, A. Dotter, C. Mankovich, M. Montgomery, D. Stello, F. Timmes, et al., “Modules for experiments in stellar astrophysics (mesa): Planets, oscillations, rotation, and massive stars,” The Astrophysical Journal Supplement Series, vol. 208, no. 1, p. 4, 2013.
[16] B. Paxton, P. Marchant, J. Schwab, E. B. Bauer, L. Bildsten, M. Cantiello, L. Dessart, R. Farmer, H. Hu, N. Langer, et al., “Modules for experiments in stellar astrophysics (mesa): Binaries, pulsations, and explosions,” The Astrophysical Journal Supplement Series, vol. 220, no. 1, p. 15, 2015.
[17] B. Paxton, J. Schwab, E. B. Bauer, L. Bildsten, S. Blinnikov, P. Duffell, R. Farmer, J. A. Goldberg, P. Marchant, E. Sorokina, et al., “Modules for experiments in stellar astrophysics (): Convective boundaries, element diffusion, and massive star explosions,”
The Astrophysical Journal Supplement Series, vol. 234, no. 2, p. 34, 2018.
[18] N. Madhusudhan, S. Justham, L. Nelson, B. Paxton, E. Pfahl, P. Podsiadlowski, and S. Rappaport, “Models of ultraluminous x-ray sources with intermediate-mass black holes,” The Astrophysical Journal, vol. 640, no. 2, p. 918, 2006.
[19] J. Lin, S. Rappaport, P. Podsiadlowski, L. Nelson, B. Paxton, and P. Todorov, “Lmxb and imxb evolution: I. the binary radio pulsar psr j1614–2230,” The Astrophysical Journal, vol. 732, no. 2, p. 70, 2011.
[20] N. Grevesse, A. Noels, A. Sauval, S. Holt, and G. Sonneborn, “Cosmic abundances,” in ASP Conf. Ser, vol. 99, 1996, p. 117.
[21] P. P. Eggleton, “Approximations to the radii of roche lobes,” The Astrophysical Journal, vol. 268, p. 368, 1983.
[22] J. S. Vink, A. de Koter, and H. Lamers, “Mass-loss predictions for o and b stars as a function of metallicity,” Astronomy & Astrophysics, vol. 369, no. 2, pp. 574–588, 2001.
[23] L. Muijres, J. S. Vink, A. de Koter, R. Hirschi, N. Langer, and S.-C. Yoon, “Mass-loss predictions for evolved very metal-poor massive stars,” Astronomy & Astrophysics, vol. 546, A42, 2012.
[24] M. Topping, “Ionizing photon production from massive stars,” 2014.
指導教授 周翊 陳科榮(Yi Chou Ke-Jung Chen) 審核日期 2019-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明