博碩士論文 106229601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.144.17.45
姓名 以菈(I Putu Wira Hadiputrawan)  查詢紙本館藏   畢業系所 天文研究所
論文名稱 原始柯伊伯帶中冥王星大小物體的動力學演化
(On the Dynamical Evolution of Pluto-Sized Objects in the Primordial Kuiper Belt)
相關論文
★ 土衛六「泰坦」離子球層的化學-動力學模型★ KBOs星體碰撞與生命及行星大氣起源
★ 行星狀星雲形態之多光譜波段觀測★ 木衛一埃歐鈉雲噴流之結構與時間變化
★ 早期太陽系系統中KBOs的形成與碰撞演化★ 彗星2001A2 (LINEAR)的光度觀測
★ SDSS之RR Lyrae候選變星之確認觀測★ 銀河系核心及盤面的隨機恆星形成歷史
★ 宇宙射線中的氦原子核能譜★ 小行星對於地球原始海水的貢獻
★ 行星狀星雲Hα結構之分析★ 在星系團中的相對論性電子和SZ效應
★ 重力透鏡和交互作用星系的資料探勘★ 在疏散星團中尋找系外行星與變星
★ 原恆星吸積盤動態模擬與氣體固態粒子作用初步探討★ 大型EKBO(Quaoar, Ixion, 2004DW)的自轉週期和表面顏色的測量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要

海王星軌道外的柯伊伯帶有一個關鍵特徵在於,有些物體會與海王星伴隨著軌道共振。最具代表性的就是矮行星冥王星與海王星有著3:2的共振。在伴隨著冥王星附近,有許多稱為Plutinos的KBO(Kuiper belt objects)與海王星也有相同的軌道關係。根據行星軌道遷移理論,冥王星、Plutinos和其他族群因為海王星的向外遷移而被捕獲至3:2、4:3、5:3、 2:1和 5:2軌道共振。在此論文研究中,我們探討了在3:2共振中存在多個類似冥王星大小(或更大)物體的可能性,以及柯伊伯帶結構相對應的動力學影響。除了探究早期太陽系的混沌演化歷史外,這種情況引起了矮行星在碎片盤中的散射過程這類新興主題。我們從模擬結果得出的結論是,在海王星向外遷移之後,由海王星捕獲到共振區,從10到50天文單位範圍中,類冥王星物體的初始數目可能小於10個。對於以後的研究工作,該結果可以作為長期演化模擬邊界條件的參考。
摘要(英) Abstract

A key feature of the architecture of the Kuiper belt outside the orbit of Neptune has to do with the presence of objects trapped in different mean-motion resonances with Neptune. The dwarf planet, Pluto, in 3:2 resonance with Neptune is the most outstanding representative. Accompanying Pluto, there are many KBOs, called Plutinos, also have the same orbital relation with Neptune. According to the theory of planetary orbital migration, Pluto and Plutinos and other groups were captured into the 3:2, 4:3. 5:3, 2:1 and 5:2 resonances by the outward orbital drift of Neptune. In this study, we explored the possibility of the existence of multiple Pluto-sized (or bigger) objects in the 3:2 resonance and the corresponding dynamical effects on the structure of the Kuiper belt. Besides serving as a probe to the chaotic evolutionary history of the early solar system, this scenario is also of interest to the emerging topic of scattering process of dwarf planets in debris disks. Our results lead into conclusion that perhaps after Neptune migrated outward, the initial number of large planetoids in the disk region from 10 to 50 au that to be captured into resonance area with Neptune could be smaller than 10. For future work, this result can be used to determine the boundary condition for another set of long-term simulations
關鍵字(中) ★ 行星式
★ 柯伊伯帶
★ 冥王星
★ 太陽系
★ 動態的
★ 計算方式
關鍵字(英) ★ Planetary
★ Kuiper Belt
★ Pluto
★ Solar System
★ Dynamical
★ Computation
論文目次 Contents
摘要 i
Abstract iv
Acknowledgement v
Contents vi
List of Figures vii
List of Tables viii
Chapter 1. Introduction 1
1.1 Origin of Solar System 1
1.2 Kuiper Belt 2
1.2.1 Orbit Migration 2
1.2.2 Size Distribution 6
1.3 Origin of Pluto 6
Chapter 2. Model Calculation 8
2.1 Mercury Code 8
2.2 Set-Up 8
2.3 Input Orbital Parameters 9
2.4 Mass Distribution 12
Chapter 3. Results 15
3.1 Definition of Test Runs 15
3.2 A Hundred Plutinos Case 15
3.3 Ten Plutinos Cases 16
Chapter 4. Summary 41
References 43
Appendix 45
參考文獻 References

Agnor, C. B., Hamilton, D. P. (2006). Neptune’s Capture of its Moon Triton in a Binary-Planet Gravitational Encounter. nature, 441, 192-194.
Bernstein, G. M., Trilling, D. E., Allen, R. L., Brown, M. E., Holman, M., Malhotra, R. (2004). The Size Distribution of Trans-Neptunian Bodies. aj, 128, 1364-1390.
Bickerton, S. J., Kavelaars, J. J., & Welch, D. L. (2008). A Search for Sub-km Kuiper Belt Objects with the Method of Serendipitous Stellar Occultations. aj, 135, 1039-1049.
Chambers, J. E. (1999). A Hybrid Symplectic Integrator that Permits Close Encounters between Massive Bodies. mnras, 304, 793-799.
Chiang, E. I., & Jordan, A. B. (2002). On the Plutinos and Twotinos of the Kuiper Belt. aj, 124, 3430-3444.
Duncan, M. J., Levison, H. F., & Budd, S. M. (1995). The Dynamical Structure of the Kuiper Belt. aj, 110, 3073-3189.
Edgeworth, K. E. (1943). The Evolution of Our Planetary System. Journal of the British Astronomical Association, 53, 181-188.
Fernández, J. A., Ip, W.-H. (1984). Some Dynamical Aspects of the Accretion of Uranus and Neptune: The Exchange of Orbital Angular Momentum with Planetesimals. icarus, 58, 109-120.
Fraser, W. C., & Kavelaars, J. J. (2008). A Derivation of the Luminosity Function of the Kuiper Belt from a Broken Power-Law Size Distribution. icarus, 198, 452-458.
Fraser, W. C., & Kavellars, J. J. (2009). The Size Distributiin of Kuiper Belt Objects for D ≳10 km. aj, 137, 72-82.
Gladman, B. J., Marsden, B. G., & Vanlaerhoven, C. (2008).Nomenclature in the Outer Solar System. The Solar System Beyond Neptune, pp.43-57
Golderich, P., Muraay, N., Longaretti, P. Y., Banfield, D. (1989). Neptune′s Story. science, 245, 500.
Ip, W.-H., Fernández, J. A. (1997). On Dymaical Scattering of Kuiper Belt Objects in 2:3 Resoonance with Neptune into Short-Period Comets. aap, 324, 778.
Izidoro, A., Morbidelli, A., Raymond, S. N., Hersant, F., Pierens, A. (2015). Accretion of Uransu and Neptune from Inward-Migrating Planetary Embryos Blocked by Jupiter and Saturn. aap, 582, A99.
Jewitt, D., Luu, J., & Trujillo, C. (1998). Large Kuiper Belt Objects: The Mauna Kea 8K CCD Survey. aj, 115, 2125-2135.
Johansen, A., & Lambrechts, M. (2017). Forming Planets via Pebble Accretion. Annual Review of Earth and Planetery Sciences, 45, 359-387.
Kenyon, S. J. (2002). Planet Formation in the Outer Solar System. pasp, 114, 265-283.
Kenyon, S. J., & Bromley, B.C. (2001). Gravitational Stirring in Planetary Debris Disks. aj, 121, 538-551.
Kuchner, M. J., Brown, M. E., Holman, M. (2002). aj, 124, 1221-1230.
Kuiper, G. P. (1951). On the Origin of the Solar System. Proceedings of the National Academy of Science, 37, 1-14.
Levison, H. F., & Duncan, M. J. (1993). The Gravitational Sculpting of the Kuiper Belt. aj, 406, L35-L38.
Levison, H. F., Morbidelli, A., VanLaerhoven, C., Gomes, R., Tsiganis, K. (2008). Origin of the Structure of the Kuiper Belt during A Dynamical Instability in the Orbits of Uranus and Neptune. icarus, 196, 258.
Malhotra, R. (1993). The Origin of Pluto′s Peculiar Orbit. nature, 365, 819-821.
Malhotra, R. (1995). The Origin of Pluto′s Orbit: Implications for the Solar System Beyond Neptune. aj, 110, 420-429.
McKinnon, W. B. (1984). On the Origin of Triton and Pluto. nature, 311, 355.
Minton, D. A., Richardson, J. E., Thomas, P., Kirchoff, M., Schwamb, M. E. (2012). Combining Saturnian Craters and Kuiper Belt Observations to Build an Outer Solar System Impactor Size-Frequency Distribution. 43rd Lunar and Planetary Science Conference, 2669.
Mommert, M., Harris, A. W., Kiss, C., et al. (2012).TNOs are cool: A Survey of the Trans-Neptunian Region. a&a, 541, A93.
Morbidelli, A., Brown, M. E., & Levison, H. F. (2003). The Kuiper Belt and Its Primordial Sculpting. Earth, Moon and Planets, 92, 1-27.
Nesvorný, D. (2011). Young Solar System′s Fifth Giant Planet?. apj, 742, L22-L27.
Nesvorný, D., Morbidelli, A. (2012). Statistical Study of the Early Solar System′s Instability with Four, Five, Six Giant Planets. aj, 144, 117.
Nesvorný, D., Vokrouhlický, D., Roig, F. (2016). The Orbital Distribution of TRans-Neptunian Objects Beyond 50 au. apj, 827, L35-L39.
Nesvorný, D. (2018). Dynamical Evolution of the Early Solar System. Annual Review of Astronomy and Astrophysics, 56, 137-174.
Nogueira, E., Brasser, R., & Gomes, R. (2011). Reassessing of the Origin of Triton icarus, 214, 113-130.
Safronov, V. S. (1969). Evolution of the Protoplaneatry Cloud and Formation of the Earth and the Planets (Transalated from Russin (1972) by the Israel Program for Scientific Translations, Jerusalem).
Shannon, A., & Dawson, R. (2018). Limits on the Number of Primordial Scattered Disc Objects at Pluto Mass and Higher from the Absence of Their Dynamical Signatures on the Present-Day Trans Neptunian Populations. mnras, 480, 1870-1882.
Stern, S. A. (1991). On the Number of Planets in the Outer Solar System: Evidence of a Substantial Population of 1000-km Bodies. icarus, 90, 271-281.
Stern, S. A., Grundy, W.M., McKinnon, W. B., Weaver, H. A., Young, L. A. (2018). The Pluto System after New Horizons. Annual Review of Astronomy and Astrophysics, 56, 357-392.
Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H. F. (2005). Origin of the Orbital Architecture of the Giant Planets of the Solar System. nature, 435, 459.
Volk, K., & Malhotra, R. (2019). Not a Simple Relationship between Neptune′s Migration Speed and Kuiper Belt Inclination Excitation. aj, 158, 64.
Walsh, K. J., Morbidelli, A., Raymond, S. N., O′Brien, D. P., Mandell, A. M., (2011). A Low Mass for Mars from Jupiter′s Early Gas-Driven Migration. nature, 475, 206-209.
指導教授 葉永烜(Wing-Huen Ip) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明