博碩士論文 106282002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:34.238.248.103
姓名 陳香穎(Hsiang-Ying Chen)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Multiscale vortex excitations and interactions in two-dimensional self-driven bacterial turbulence)
相關論文
★ 二加一維鏈狀微粒電漿液體微觀運動與結構之實驗研究★ 剪力下的庫倫流體微觀黏彈性反應
★ 強耦合微粒電漿中的結構與動力行為研究★ 脈衝雷射誘發之雷漿塵爆
★ 強耦合微粒電漿中脈衝雷射引發電漿微泡★ 二維強耦合微粒電漿方向序的時空尺度律
★ 二維微粒庫倫液體中集體激發微觀動力研究★ 超薄二維庫侖液體的整齊行為
★ 超薄二維微粒電漿庫侖流的微觀運動行為★ 微米狹縫中之脈衝雷射誘發二維氣泡相互作用
★ 介觀微粒庫倫液體之流變學★ 二維神經網路系統之集體發火動力學行為
★ 大白鼠腦皮質層神經元網路之同步發放行為研究★ 二維團簇腦神經網路之同步發火
★ 二維微粒電漿液體微觀結構之記憶行為★ 微粒電漿中電漿微泡的生成與交互作用之動力行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2022-12-30以後開放)
摘要(中) 紊流廣泛存於各類非線性系統中,透過外部驅動,可使平穩的系統轉換成紊亂狀態,時空上其頻譜皆呈現冪次下降(power law decay)。然而,紊流並非完全隨機且不可預測,過去研究在流體紊流(hydrodynamic turbulence)中發現蟲狀(worm-like)與絲狀(filament-like)多重尺度單調節構(coherent structures),因此,可將紊流看成相互糾纏的多尺度漩渦。
細菌紊流為經典二維自驅系統,在高細菌濃度下,透過自驅力、長條形細胞體與非線性強耦合,細菌形成團簇並展現紊流般集體運動行為如多重尺度渦旋(vortex)及噴射流(jet),能量可由單細胞尺度傳遞至大尺度,多尺度渦絲(vortex filament)之時空動力行為與其交互作用仍為重要且未解議題,此外連續頻譜中缺少譜隙之特性使上述議題更加困難。
此研究中,我們以二維自驅大腸桿菌紊流為平台並利用二維經驗模態拆解自驅紊流成空間多尺度模態,研究多尺度同調激發渦漩之時空動力行為與各模態間交互作用。發現不同尺度渦絲在時空中可展現單調激發、移動、互相糾纏與湮滅運動,其中相鄰模態但不同螺旋性(helicity)的渦漩對較其他漩渦對更喜歡座落在一起。更發現渦旋等值線可用以了解渦旋運動如渦旋分裂與合併(splitting and merging events)的重要指標,當漩渦等值線變成細長狀時,漩渦核可能在下時刻分解或合併。此外,我們亦發現漩渦分解與合併經常伴隨馬鞍狀奇異點在周遭流場產生。
摘要(英) Turbulence is a ubiquitous phenomenon, exhibiting a continuous spectrum with a power law decay over a wide range of spatiotemporal scales, in various nonlinear extended systems. However, turbulence is not completely random. Intermittent coherent structures in the forms of vortices with worm- or filament like cores have been found in hydrodynamic turbulence. Based on these features, turbulence is usually viewed as a tangle of interacting multiscale vortices.
Bacterial systems, a model active system, exhibits self-driven turbulent-like motion with multiscale vortex excitation through the interplay of self-propulsion and nonlinear couplings from anisotropic excluded volume and strong mutual interaction. It is intriguing to ask how multiscale coherent vortices behave and how they are correlated spatiotemporally. In addition, the absence of spectral gaps in the continuous turbulent spectrum hinders the decomposition of the turbulent spectrum into multi-scale modes through Fourier analysis. This makes the above issues more difficult.
In this work, we experimentally investigate the above issues in two dimensional (2D) E. coli suspension in thin liquid films. Through bi-dimensional empirical mode decomposition, two dimensional turbulent-like vorticity field is adaptively decomposed into modes with different scales. It is found that the multi-mode vortex filaments exhibit coherent excitation, propagation and annihilation in 2+1D space time. The vortex cores of different modes with the same helicity tend to entangle and co-localize with those of their neighboring mode at short range. Interestingly, the shape of a contour line of a vortex core can serve as an indicator for vortex splitting and merging events, which are further found to be associated with the emergence of saddle-type singularity at the surrounding flow field.
關鍵字(中) ★ 二維細菌紊流
★ 多重尺度漩渦
★ 二維經驗模態拆解
關鍵字(英) ★ Bacterial turbulence
★ Multiscale vortex excitations
★ Mode-mode interaction
★ Empirical mode decomposition
論文目次 1. Introduction 1
2. Background and theory 4
2.1 Hydrodynamic turbulence····························· 4
2.2 Bacterial turbulence································ 6
2.2.1 Basic feature of E. coli·························· 6
2.2.2 Collective motion ·································7
2.3 Empirical mode decomposition·························8
3. Experiment and data analysis 10
3.1 Freestanding bacterial liquid film················· 10
3.2 Bi-dimensional empirical mode decomposition·········13
4. Result and discussion 15
4.1 Decomposition of bacterial turbulence into multiscale modes···················································15
4.2 Dynamical behavior of vortex between scales ········18
4.3 Inter- and intra-mode interaction between vortex cores ························································20
4.4 Relation between vortex dynamical behaviors and velocity fields ········································24
5. Conclusion 27
6. Bibliography 29
Appendix
參考文獻 [1] V. E. Zakhariv, V. S. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, Berlin, 1992).
[2] P. A. Davidson, Turbulence : An Introduction for Scientists and Engineers (Oxford University Press, 2004)
[3] T. Bohr, M. H. Jensen, G. Paladin, and A. Vulpiani, Dynamical Systems Approach to Turbulence (Cambridge, New York, 1998).
[4] M. Farge, G. Pellegrino, and K. Schneider, Phys. Rev. Lett. 87, 054501 (2001)
[5] J. E. Ruppert-Felsot, O. Praud, E. Sharon, and H. L. Swinney, Phys. Rev. E 72, 016311 (2005)
[6] K. Schneider, J. Ziuber, M. Farge, and A. Azzalini, J. Turbul. 7, 44 (2006)
[7] Petr Denissenko, Sergei Lukaschuk, and Sergey Nazarenko, Phys. Rev. Lett. 99, 014501 (2007)
[8] S. Goto, J. Fluid Mech. 605, 355-366 (2008)
[9] T. Leung, N. Swaminathan and P. A. Davidson, J. Fluid Mech. 710, 453-481 (2012)
[10] J. I. Cardesa, A. Vela-Martín, J. Jiménez, Science 357, 782-784 (2017)
[11] J. Jimenez, A. A. Wray, P. G. Saffman and R. S. Rogallo, J. Fluid Mech 255, 65-90 (1993)
[12] J. Cardesa, A, Vela-Martín, J. Jiménez, Science 357, 782-784 (2017)
[13] P. C. Lin and L. I, Phys. Rev. Lett, 120, 135004 (2018)
[14] C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein, and J. O. Kessler, Phys. Rev. Lett. 93, 098103 (2004).
[15] I. S. Aranson, A. Sokolov, J. O. Kessler, and R. E. Goldstein, Phys. Rev. E 75, 040901(R) (2007).
[16] L. H. Cisneros, R. Cortez, C. Dombrowski, R. E. Goldstein, and J. O. Kessler, Exp. Fluids. 43, 737 (2007).
[17] H. P. Zhang, A. Beer, R. S. Smith, E. L. Florin, and H. L. Swinney, Europhys. Lett. 87, 48011 (2009).
[18] S. M. Fielding, D. Marenduzzo, and M. E. Cates, Phys. Rev. E 83, 041910 (2011).
[19] K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, and R. E. Goldstein, Proc. Natl. Acad. Sci. USA 108, 10940 (2011).
[20] H. P. Zhang, A. Beer, E. L. Florin, and H. L. Swinney, Proc. Natl. Acad. Sci. USA 107, 13626 (2010).
[21] H. Y. Chen, Y. T. Hsiao, S. C. Liu, T. Hsu, W. Y. Woon, and L. I, Phys. Rev. Lett. 121, 018101 (2018)
[22] C. W. Wolgemuth, Biophys. J., 95, 1564-1574 (2008)
[23] H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E. Goldstein, H. Lowen, and J. M. Yeomans, Proc. Natl. Acad. Sci. USA, 109, 36 (2012)
[24] J. Dunkel, S. Heidenreich, K. Drescher, H. H. Wensink, M. Bar, and R. E. Goldstein, Phys. Rev. Letter. 110, 228102 (2013)
[25] E. Lauga, Annu. Rev. Fluid Mech. 48, 105-30 (2016)
[26] X. L. Wu and A. Libchaber, Phys. Rev. Lett. 84, 3017 (2000).
[27] K. C. Leptos, J. S. Guasto, J. P. Gollub, A. I. Pesci, and R. E. Goldstein, Phys. Rev. Lett. 103, 198103 (2009).
[28] G. Mi˜no, T. E. Mallouk, T. Darnige, M. Hoyos, J. Dauchet, J. Dunstan, R. Soto, Y. Wang, A. Rousselet, and E. Clement, Phys. Rev. Lett. 106, 048102 (2011).
[29] M. Farge, G. Pellegrino and K. Schneider, Phys. Rev. Lett. 87, 054501 (2001)
[30] M. K. Rivera, W. B. Daniel, S. Y. Chen, and R. E. Ecke, Phys. Rev. Lett. 90, 104502 (2003)
[31] J. E. Ruppert-Felsot, O. Praud, E. Sharon, H. L. Swinney, Phys. Rev. Lett. 72, 016311 (2005)
[32] K. Schneider, M. Farge, A. Azzalini, and J. Ziuber, J. Turbul. 7, 44 (2006)
[33] M. Mathur, G. Haller, T. Peacock, J. E. Ruppert-Felsot, and H. L. Swinney, Phys. Rev. Lett. 98, 144502 (2007)
[34] G. Haller, Annu. Rev. Fluid Mech. 47, 137-62 (2014)
[35] G. Haller, A. Hadjighasem, M. Farazmand, and F. Huhn, J. Fluid Mech. 795, 136-173 (2016)
[36] N. E. Huang, S. S. P. Shen, Hilbert-Huang Transform and Its Applications (World Scientific, Singapore, 2005)
[37] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung and H. H. Liu, Proc. R. Soc. Lond. A 454, 903 (1998)
[38] N. E. Huang and Z. Wu, Rev. Geophys. 46, RG2006 (2008)
[39] Z. Wu and N. E. Huang, Adv. Adapt. Data Anal. 1, 1-41 (2009)
[40] Z. Wu and N.E. Huang, Adv. Adapt. Data Anal. 2, 397-414 (2010)
[41] Gong, S., Schwalb, W., Wang, Y., Chen, Y., Tang, Y., Si, J., Shirinzadeh, B. and Cheng, W. Nat. Commun. 5, 3132 (2014)
[42] M. R. Thirumalaisamy, and P. J. Ansell, IEEE Signal Processing Letters, 25, 10, 1550-1554 (2018)
[43] H. C. Berg, E. coli in Motion (Springer, New York, 2003)
[44] A. Sokolov, I. S. Aranson, J. O. Kessler, and R. E. Goldstein, Phys. Rev. Lett. 98, 158102 (2007)
[45] K. A. Liu and L. I, Phys. Rev. E, 86, 011924 (2012)
[46] Ji-Lin Jou, Master Thesis, National Central University, Taiwan (2016)
[47] W. Thielicke and E. J. Stamhuis, http://PIVlab.blogspot.com.
指導教授 伊林(Lin I) 審核日期 2019-12-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明