博碩士論文 106322037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:1 、訪客IP:3.16.41.142
姓名 簡濟豪(Ji-Hao Jian)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 淺層崩塌物聯網系統與深層型時域反射邊坡監測技術之整合
(Development of the integrated monitoring system of IoT and TDR for shallow and deep-seated landslides)
相關論文
★ 時域反射法於土壤含水量與導電度遲滯效應之影響因子探討★ TDR監測資訊平台之改善與 感測器觀測服務之建立
★ 用過核子燃料最終處置場緩衝材料之 熱-水耦合實驗及模擬★ 堰塞壩破壞歷程分析及時域反射法應用監測
★ 深地層最終處置場緩衝材料小型熱-水耦合實驗之分層含水量量測改善★ 應用時域反射法於地層下陷監測之改善研發
★ 深地層處置場緩衝材料小型熱-水-力耦合實驗精進與模擬比對★ Modification of TDR Penetrometer for Water Content Profile Monitoring
★ 利用線上遊戲於國小一年級至三年級學童防災教育推廣效益之研究—以桃園防災教育館為例★ 低放射性最終處置場混合型緩衝材料之工程特性及潛變試驗與模擬
★ Improved TDR Deformation Monitoring by Integrating Centrifuge Physical Modeling★ 用於滑坡監測的 PS- 和 SBAS-InSAR 處理的參數研究——以阿里山為例
★ 穿戴式偵測墜落及跌倒裝備於本國建築工地之研發測試★ 機器學習在水庫入流與濁度預測之應用-以石岡壩為例
★ 深度學習與資料擴增於山崩監測預測之可行性評估★ 利用光學與熱影像融合進行邊坡之長期穩定性監測評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年因氣候異常使得台灣山坡地之安全監測重要程度逐年上升,但傳
統人力監測需耗費大量人力、機具、時間等成本,因此防災自動化監測技術逐漸普及,並隨著大數據、IoT(Internet of Things)概念而日益受到重視。時域反射技術(Time Domain Reflectometry,TDR)近期已被廣泛應用於土木監測,運用該技術可監測橋梁沖刷、水位、邊坡滑動及泥砂濃度等。近幾年隨著微控制板如 Arduino 與 MEMS( Microelectromechanical Systems)微感測器所形成之物聯網概念下,在既有的 TDR 監測系統之外,輔以多點的淺層崩塌物聯網監測模組,預期可增加邊坡滑動監測的有效數據種類,例如以Ublox GPS 晶片透過 RTK(Real Time Kinematic)解算定位資料,可有效確認邊坡地表位移狀態;以及三軸加速度計具有即時得知地表的傾度感測資料的優點,結合既有 TDR 地下滑動面監測,於不同之時間與空間尺度下,
可完成三道重要的監測邊坡滑動的判斷機制。本系統並結合溫度計、溼度計、土壤濕度計等感測元件,最後藉由 LPWAN(Low-Power Wide-Area Network)無線傳輸技術回傳監測數據至服務端。
另外本研究基於 OGC(Open Geospatial Consortium)所制定之 SensorThings API 的 Web 服務協定標準,包含感測器、觀測位置、觀測時間與觀測屬性,可由 JSON (JavaScript Object Notation)及 REST(Representational State Transfer)協議描述,故可提供比先前 SOS(Sensor Observation Service)標準更輕量化、更自由化的標準定義,更符合物聯網系統輕量化資料傳輸的理念。因此本研究提出 SensorThings API與 TDR 監測資訊平台連結應用之架構規劃與實作,以資料完全自動化為導向,將 TDR 監測資訊平台中所有感測器的異質性資料加以管理與描述,藉以提昇 TDR 監測資訊系統之資料交流效率。
摘要(英) The automatic monitoring systems are gradually concerned for disaster prevention in Taiwan recently. Time Domain Reflectometry (TDR) is one of valuable technique for landslide monitoring. It is a passive-based monitoring method which provides multi-functions, such as water level, bridge scour, landslide, and suspended sediment concentration (SSC), based on a single TDR device via a multiplexer. In addition, the Real Time Kinematic (RTK) based single frequency GPS sensor can provide the centri-meter for the surface displacement and direction of the landslide. Thus, this study integrate the low-cost monitoring device with single frequency GPS three-axis accelerometer for surface displacement monitoring, as well as the TDR for sliding surface monitoring. Consequently, the proposed monitoring system not only can provide diverse monitoring data at field-side, but also have three thresholds for early waring of the landslide.
Furthermore, the Open Geospatial Consortium (OGC) provided SensorThings API, which has a standardized definition for the sensor description, observed position, and observed feature. Because it is based on JSON and Restful proctols, the content of SensorThings API is lighter and more liberal than Sensor Observation Service (SOS). Besides, it realizes data interoperable way by providing web service. This study also improved a middleware, which is between SOS and the existing TDR monitoring platform, by providing TDR heterogeneity data interoperability via SensorThings API finally.
關鍵字(中) ★ 時域反射法
★ 物聯網
★ 邊坡監測
★ 資料統一發布格式
關鍵字(英) ★ TDR
★ IOT
★ Slope Monitoring
★ SensorThings API
論文目次 致謝 ...................................................... iv
目錄 ....................................................... v
圖目錄 .................................................... viii
表目錄 .................................................... xvii
第 1 章 前言 ....................................................... 1
1-1 研究背景與動機 ....................................................... 1
1-2 研究目的 ....................................................... 3
1-3 研究流程 ....................................................... 4
第 2 章 文獻回顧 ....................................................... 7
2-1 坡地滑動分類說明 ....................................................... 7
2-2 WSN 監測應用 ....................................................... 9
2-2-1 簡易型淺層地滑監測系統 ...................................................... 10 2-2-2 公路邊坡崩塌監測之無線感測網路模組研發 ...................................................... 13
2-2-3 既有 GPS 應用與單頻 GPS 定位技術 ...................................................... 19 2-2-4 Low Power Wide Area Networks ( LPWAN ) ...................................................... 23 2-2-5 Arduino UNO 與 Raspberry pi 3B+比較 ...................................................... 25 2-3 其他坡地檢監測方法 ...................................................... 29
2-3-1 土壤電阻性質量測:地電阻影像法 ...................................................... 29 2-3-2 現地影像監測 ...................................................... 32 2-4 TDR 監測技術平台與統一資料格式分享技術 ...................................................... 33
2-4-1 TDR 基本原理 ...................................................... 34
2-4-2 OGC Sensor Observation Service
...................................................... 36
2-4-3 SOS 管理介面規劃 ...................................................... 50 2-4-4 SOS Control Center 建置成果說明 ...................................................... 51 2-4-5 OGC SensorThings API ...................................................... 55 2-5 綜合評析 ...................................................... 61
2-5-1 現場端 ...................................................... 61 2-5-2 服務端 ...................................................... 62 第 3 章 研究方法 ...................................................... 63
3-1 現場場址說明 ...................................................... 70
3-1-1 中央大學宵夜街停車場 ...................................................... 70 3-1-2 阿里山五彎仔 ...................................................... 88 3-2 中央大學宵夜街停車場建置測試 ...................................................... 96
3-2-1 現場硬體配置 ...................................................... 96 3-2-2 系統模組 ..................................................... 100 3-2-3 中央大學停車場案例 Arduino 運作機制 ..................................................... 106 3-2-4 樹莓派接收 GPS 收集資料運作程式 ..................................................... 111 3-3 阿里山公路 45k 建置方法 ..................................................... 113
3-3-1 現場端工業型電腦接收感測資料運作程式 ..................................................... 113 3-3-2 阿里山公路 45k Arduino 運作機制 ..................................................... 115 3-4 服務端 Parser 建立 ..................................................... 117
3-4-1 服務端 MQTT Parser 儲存至資料庫設計 ..................................................... 117 3-4-2 服務端 Parser 儲存至資料庫設計 ..................................................... 119 3-5 SensorThings API 架構方法 ..................................................... 120
3-5-1SensorThings API 與 TDR 多功能資訊平台整合規劃 ..................................................... 120 3-5-2 TDR 多功能資訊平台之 middleware 機制 ..................................................... 123
3-5-3 監測平台發布設定之 Published Configuration 資料庫規劃 ..................................................... 124 3-5-4TDR 監測資料基於 SensorThings API 資訊描述 ..................................................... 128 第 4 章 成果建置與評析 ..................................................... 137
4-1 中央大學現地測試成果 ..................................................... 139
4-1-1 中央大學宵夜街停車場 Arduino 運作評析 ..................................................... 139 4-1-2 中央大學宵夜街停車場 GPS 資料評析 ..................................................... 157 4-1-3 中央大學宵夜街停車場縮時攝影現場照片評析 ..................................................... 161 4-2 阿里山公路 45K 建置邊坡滑動感測物聯網系統成果 ..................................................... 164
4-2-1 阿里山公路 45K Arduino 運作評析 ..................................................... 164 4-2-2 阿里山公路 45K GPS 資料評析 ..................................................... 168 4-2-3 阿里山公路 45K TDR 變位型資料評析 ..................................................... 183 4-3 邊坡滑動判斷機制研擬 ..................................................... 186
4-4 SensorThings API 資料統一發布建置成果說明 ..................................................... 187
第 5 章 結論與建議 ..................................................... 191
5-1 結論 ..................................................... 191
5-2 建議 ..................................................... 192
參考文獻 ..................................................... 194
附錄 ..................................................... 200
參考文獻 1. 52 ° NorthSOS. (2017). “52 ° NorthSOS About”<
http://52north.org/communities/sensorweb/sos/>
2. Arduino.(2019). “Introduction”. < https://www.arduino.cc/en/guide/introduction?setlang=cn>
3. Basilio, L. I., Chen, R. L., Williams, J. T., & Jackson, D. R., (2007). “A new planar dual-band GPS antenna designed for reduced susceptibility to lowangle multipath,” Antennas and Propagation, IEEE Transactions on, 55(8), 2358-2366.
4. Benoit, L. Briole, P., Martin, O., Thom, C., Malet, J.P., and Ulrich, P. (2015). “Monitoring landslide displacements with the Geocube wireless network of low-cost GPS,” Engineering Geology, 195, 111–121.
5. Brambilla Davide, Longoni Laura and Papini Monica (2015). “Field and laboratory testing of time domain reflectometry cables for landslide.
6. Chaussard, E., Bürgmann, R., Cohen-Waeber, J., and Delbridge, B. (2015). “Landslide monitoring with InSAR,” <http://dels.nas.edu/resources/staticassets/besr/miscellaneous/Landslides-Feb2015/Chaussard2015.pdf>
7. Chung, C.C. and Lin, C.P. (2011). “High Concentration Suspended Sediment Measurements using Time Domain Reflectometry.” Journal of Hydrology, Vol. 401, pp. 134-144.
8. Chung, C.C, Lin, C.P., Wu, I.L.; Chen P.H., and Tsay, T.K. (2013). “New TDR waveguides and data reduction method for monitoring of stream and drainage stage.” Journal of Hydrology, Vol.505, pp.346-351
9. Cina, A., Piras, M, and Bendea, H.I., (2013). “Monitoring of landslides with mass market GPS: an alternative low cost solution,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W3, The Role of Geomatics in Hydrogeological Risk, 27 – 28 February 2013, Padua, Italy.
10. Drusa Marián and Bulko Roman (2016). “Rock slide monitoring by using TDR inclinometers.” De Gruyter Open, Vol.12, pp. 137-144.
11. Fredlund, D. G., (1987). “Slope stability analysis incorporating the effect of soil suction,” Slope Stability, Edited by Anderson, M. G. and Richards, K. S., John Wiley and Sons Ltd.
12. Huang, S-Q. and Wang, J-X., (2015), “New data processing strategy for single frequency GPS deformation monitoring,” Survey Review, 47, Iss. 344.
13. Lee, H.C., Fang, Y.M., Lee, B.J., and King, C.T. (2010). “Design of a multifunctional wireless sensor for in-situ monitoring of debris flows,” IEEE Transactions on Instrumentation and Measurement, 59(11), 2958-2967.
14. Lin, C.P. (2009) “TDR as Geo-Nerve: A Slope Monitoring System Example.” Geotechnical instrumentation News, pp. 38-40.
15. Lin, C.P. and Tang, S.H. (2005). “Development and calibration of a TDR extensometer for geotechnical monitoring.” Geotechnical Testing Journal, Vol. 28, No. 5, Paper ID: GTJ12188.
16. Lin, C.P., Chung, C.C., Huisman, J. A., and Tang, S.-H. (2008). “Clarification and Calibration of Reflection Coefficient for Electrical Conductivity Measurement by Time Domain Reflectometry.” Soil Sci. Soc. Am. J., Vol. 72, pp. 1033-1040.
17. Lin, C.P., Tang, S.H., Lin, W.C., and Chung, C.C. (2009). “Quantification of cable deformation with TDR: implications to landslide monitoring.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 1, pp. 143152.
18. Lytvyn, M., Pollabauer, C., Troger, M., Landfahrer, K., Hormann, L., Steger, C., (2012) “Real-Time Landslide Monitoring Using Single-Frequency PPP: Proof of Concept,” 2012 6th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing, (NAVITEC), 5-7 Dec.
19. monitoring.” 15th International Multidisciplinary Scientific GeoConference, pp. 329-336.
20. HUAWEI. (2016). “NB-IOT white paper”. < www.huawei.com/minisite/45g/img/NB-IOT.pdf>
21. Open Geospatial Consortium (2016) “SensorThings API” . < https://www.opengeospatial.org/standards/sensorthings>
22. Open Geospatial Consortium (2016) “SensorThings API Part 1: Sensing” . < http://docs.opengeospatial.org/is/15-078r6/15-078r6.html>
23. Open Geospatial Consortium (2016) “SensorThings API Part 2: Tasking Core” . < http://docs.opengeospatial.org/is/17-079r1/17-079r1.html>
24. Tai Y.H. and Chang, C. P., (2015). “Application of radar interferometry for monitoring the landslide creeping of Jiufen area, Northern Taiwan,” EGU General Assembly, 12-17 April, Vienna, Austria.
25. Uchimura, T, Towhata, I., Anh, T.T.L., Fukuda, J., Bautista, C.J.B., Wang, L., Seko, I., Uchida, T., Matsuoka, A., Ito, Y., Onda, Y., Iwagami, S., Kim, M.S., and Sakai, N., (2010). “Simple monitoring method for precaution of landslides watching tilting and water contents on slopes surface, “Landslides, 7, 351–357.
26. Uchimura, T, Towhata, I., Wang, L., and Qiao, J., (2011). “Validation and interpretation of monitored behavior of slopes vulnerable to failure,” Proceedings of the Second World Landslide Forum – 3-7 October 2011, Rome.
27. Vangelista, L., Zanella, A., and Zorzi, M., (2015). “Long-Range IoT Technologies: The Dawn of LoRa™,” In: Atanasovski V., Leon-Garcia A. (eds), Future Access Enablers for Ubiquitous and Intelligent Infrastructures, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 159. Springer, Cham.
28. Very Cheap RTK Receivers: Changing the Landscape of Positioning Services (2019). “Low-Cost Receiver System”< https://home.csis.utokyo.ac.jp/~dinesh/WEBINAR_files/MGA_W01.pdf >
29. Wang, G.Q., (2013), “Millimeter-accuracy GPS landslide monitoring using Precise Point Positioning with Single Receiver Phase Ambiguity (PPP-SRPA) resolution: a case study in Puerto Rico,” Journal of Geodetic Science, 3(1), 2231
30. Wikipedia. (2019). “Arduino”. < https://zh.wikipedia.org/wiki/Arduino>
31. Wikipedia. (2019). “Raspberry Pi”.< https://zh.wikipedia.org/wiki/%E6%A0%91%E8%8E%93%E6%B4%BE>
32. 日泰興工程有限公司 (2016),「桃園市中央大學地質鑽探及土壤試驗工作報告書」。
33. 交通部運輸研究所 (2011),「全球衛星定位與自動化監測系統在坡地防災之應用(4/4) 」。
34. 交通部運輸研究所 (2016),「公路邊坡崩塌監測之無線感測網路模組研發(1/2) 」。
35. 李孟羲 (2017),「低成本 GNSS 即時動態定位系統之開發」 ,碩士論文,國立師範大學機電工程學系研究所。
36. 李秉乾 (2012) 「開放式土石流無線感測網路平台及前瞻性預測模式應用研究---子計畫:無線感測網路在土石流預測模式之應用」,行政院國家科學委員會。
37. 沈力洋,揚名,陳鶴欽 (2010),「GPS/Galileo 單頻即時動態定位效能分析」,地籍測量,第廿九卷第 2 期,第 1-13 頁。
38. 林哲毅,(2009),「土壤電阻率與含水層特性關係之探討」,碩士論文,國立交通大學土木工程研究所。
39. 林昊,范景辉,洪友堂,涂鹏飞,郭小方 (2014), 「单频静态 GPS 在滑坡监测中的高程精度分析」,国土资源遥感,第 26 卷,第 2 期,第 74-79頁。
40. 林德貴,陳啟天,徐森彥,蘇苗彬(2007),「梨山地滑區降雨滲流及穩定性分析」,水土保持學報,第 39 (4) 期,419 - 451 頁。
41. 吳振宏(2016),「物聯網制動功能之互操作性解決方案」碩士論文,國立中央大學土木工程研究所。
42. 戴子強 (2010),「 TDR 感測平台資訊系統」,碩士論文,國立交通大學網路工程研究所。
43. 周南山 (2005), 「山區道路邊坡災害防治」,森林遊憩設施規劃設計與施工研習會。
44. 陳柔甄 (2017),「以 RTKGPS 為基礎之定位旗標應用」碩士論文,南臺科技大學電子工程研究所。
45. 陳鶴欽,饒瑞鈞,王敏雄,劉正倫 (2009), 「結合低價單頻 GPS 接收儀與虛擬基準站定位精度之研究」,中正嶺學報,第三十八卷,第一期,115-126 頁。
46. 黃聖棋 (2014),「地工織物加勁土壤之承載力影響因子探討-以中大紅土微粒」,碩士論文,國立中央大學土木工程研究所。
47. 張佑新 2008,「五彎仔地滑區邊坡滑動塊體之時空分佈及滑動行為之數值模擬」。
48. 經濟部 (2015),「山崩與地滑地質敏感區劃定計畫書」 49. 簡世杰 (2002),「阿里山五彎仔地滑區滑動機制與穩定性之研究」。
50. 關智瑞 (2017),「 TDR 監測資訊平台之改善與感測器觀測服務之建立」,碩士論文,國立中央大學土木工程研究所。
51. 蔡勝棠 (2018), 「火炎山土石流之降雨特性及地貌演變分析」,碩士論文,國立中央大學土木工程研究所。
52. 鄭清江,譚志豪,鍾明劍,李錦發,費立沅(2009),「莫拉克降雨引致高屏地區邊坡淺層崩塌災害勘查與穩定性數值分析案例」,地工技術,第122 期,133-142 頁。
53. 蕭新財 (2011),「不飽和崩積土壤淺層水文特性對邊坡穩定影響之研究」,碩士論文,國立臺灣科技大學營建工程研究所。
指導教授 鐘志忠(Chih-Chung Chung) 審核日期 2019-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明