博碩士論文 106322083 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:44.220.44.148
姓名 江曜新(Yao-Hsin Chiang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 利用本體論整合城市模型及物聯網開放式標準探討智慧城市之應用
(An Ontology integrating City Model and Internet of Things Open Standards for Smart City Applications)
相關論文
★ 物聯網制動功能之互操作性解決方案★ 地理網路爬蟲:具擴充及擴展性之地理網路資源爬行架構
★ TDR監測資訊平台之改善與 感測器觀測服務之建立★ 利用高解析衛星立體像對產製近岸水底地形
★ 整合oneM2M 及OGC SensorThings API 標準建立開放式物聯網架構★ 巨量物聯網資料之多重屬性索引架構
★ 高效率異質性時序資料表示法辨別系統★ A TOA-reflectance-based Spatial-temporal Image Fusion Method for Aerosol Optical Depth Retrieval
★ An Automatic Embedded Device Registration Procedure for the OGC SensorThings API★ 基於本體論與使用者興趣之個人化地理網路搜尋引擎
★ 運用無人機及影像套合法進行混凝土橋梁裂縫檢測★ GeoRank: A Geospatial Web Ranking Algorithm for a GeoWeb Search Engine
★ 應用高時空解析度遙測影像融合於海水覆蓋率之監測★ LoRaWAN Positioning based on Time Difference of Arrival and Differential Correction
★ 類神經網路逆向工程理解遙測資訊:以Landsat 8植被分類為例★ 基於語意網技術與WordNet促進地理網路資源之探索
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 智慧城市(Smart City)期望有效整合都市的組成系統及服務,提昇資源運用的效率、最佳化都市管理和服務,以及改善人類的生活品質。在智慧城市的架構中,城市模型及物聯網(Internet of Things, IoT)各提供了靜態與動態的多種資訊,為了達到具系統性的智慧城市基礎建設,物聯網及城市模型的整合是不可或缺的。然而,目前多數整合城市模型及物聯網資源之現有解決方案都是根據個別應用情境而客製化而成,不同應用的資料整合方式不具有互操作性。本研究除了搜集相關文獻對各式整合策略進行分類歸納及優劣分析,為了提升智慧城市的互操作性,本研究提出了一種基於語義(Semantic)本體論(Ontology)的方法整合開放地理空間聯盟(Open Geospatial Consortium, OGC)所定義的CityGML、IndoorGML、及SensorThings API之標準資料模型。此外,由於物聯網中對於物(Thing)的定義非常彈性,此篇研究提出的本體論考慮了在城市模型中對於Thing之認知的不同視角,例如將建物、房間、門窗、裝置視為Thing的不同包裝方式。根據本研究的結果顯示,基於所提出之本體論,各自獨立的CityGML、IndoorGML、SensorThings API資料來源可透過SPARQL(SPARQL Protocol and RDF Query Language)查詢彼此對應之關係。此外,本研究也將該本體論應用於各式模擬智慧城市案例,如智能家居、智慧保全系統、智慧醫療照護、以及智能火災疏散系統,以證明這項研究的貢獻。總體而言,此研究所提出的解決方案以具互操作性的方式促進物聯網資源及城市模型資訊的整合,進而支援多樣的智慧城市應用。
摘要(英) Smart cities effectively integrate human, physical, and digital systems operating in the built environment to provide automatic and efficient applications. While city models, Internet of Things (IoT), and domain models are essential components of smart cities, the integration of IoT resources and the city models are central information backbone for smart city cyber-infrastructures. However, by reviewing existing literatures and cases, we argue that most of the existing solutions integrating city models and IoT resources are customized based on individual applications and lack of interoperability. To improve the interoperability between smart city modules, this study first categorizes and analyzes the pros and cons of integration strategies, and proposes a semantic-based method to integrate OGC (Open Geospatial Consortium) CityGML, IndoorGML and SensorThings API standards. To be specific, this study proposes an integration ontology to connect the data models from these standards. In addition, due to the flexible definition of Things in the IoT, the proposed ontology also supports multiple views of Things, including a-building-as-a-Thing, a-room-as-a-Thing, an-opening-as-a-Thing, and a-device-as-a-Thing. As a result, information from the CityGML, IndoorGML and SensorThings API can be connected and queried via SPARQL (SPARQL Protocol and RDF Query Language) queries. To demonstrate the contributions of this research, different use cases such as smart home, smart security, smart healthcare and fire evacuation system are simulated. Overall, the proposed solution can facilitate the integration of IoT resources and city models in an interoperable manner to support smart city applications.
關鍵字(中) ★ 開放式標準
★ 本體論
★ 物聯網
★ 城市模型
★ 智慧城市
關鍵字(英) ★ Open standard
★ Ontology
★ Internet of Things
★ City model
★ Smart city
論文目次 摘要 ii
Abstract iii
Acknowledgement iv
Table of Contents v
List of Figures vii
List of Tables ix
List of Queries x
1. Introduction 1
1.1 Background 1
1.2 Objective 4
2. Related works 6
2.1 Integration of city model and IoT resources for smart city 6
2.2 Open standard for city models 7
2.3 Open standards for IoT resources 8
2.4 Discussion of integration strategies 9
3. Methodology 13
3.1 OGC CityGML 13
3.2 OGC IndoorGML 17
3.3 OGC SensorThings API 19
3.4 Integration strategy 24
3.4.1 Resource properties for integration ontology framework 25
3.4.2 Multiple definitions of the IoT 28
4. Implementation result 38
4.1. Testing city model datasets 38
4.1.1. FJK Haus dataset 38
4.1.2. NCU R3 building dataset 41
4.2. SPARQL query for data retrieval 43
4.3. Use case simulations 44
4.3.1. Smart energy saving system 45
4.3.2. Smart security system 52
4.3.3. Smart healthcare 54
4.3.4. Fire evacuation system 57
5. Conclusions and Future Work 61
Reference 63
參考文獻 Azhar, S., Nadeem, A., Mok, J. Y., & Leung, B. H. (2008). Building Information Modeling (BIM): A new paradigm for visual interactive modeling and simulation for construction projects. Paper presented at the Proc., First International Conference on Construction in Developing Countries.
Bačić, Ž., Jogun, T., & Majić, I. (2018). Integrated sensor systems for smart cities. Tehnički vjesnik, 25(1), 277-284.
Batty, M. (2013). Big data, smart cities and city planning. Dialogues in Human Geography, 3(3), 274-279.
Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific american, 284(5), 28-37.
Botts, M., Percivall, G., Reed, C., & Davidson, J. (2006). OGC® sensor web enablement: Overview and high level architecture. Paper presented at the International conference on GeoSensor Networks.
Boyes, H., Hallaq, B., Cunningham, J., & Watson, T. (2018). The industrial internet of things (IIoT): An analysis framework. Computers in Industry, 101, 1-12.
Bröring, A., Stasch, C., & Echterhoff, J. (2012). OGC Sensor Observation Service Interface Standard, Version 2.0. Open Geospatial Consortium standard.
Carneiro, J., Rossetti, R. J., Silva, D. C., & Oliveira, E. C. (2018). BIM, GIS, IoT, and AR/VR Integration for Smart Maintenance and Management of Road Networks: A Review. Paper presented at the 2018 IEEE International Smart Cities Conference (ISC2).
Chaturvedi, K., Willenborg, B., Sindram, M., & Kolbe, T. H. (2017). Solar potential analysis and integration of the time-dependent simulation results for semantic 3D city models using dynamizers. Paper presented at the Proceedings of the 12th International 3D GeoInfo Conference 2017.
Cox, S. (2006). Observations and measurements. Open Geospatial Consortium Best Practices Document, 21.
Desai, P., Sheth, A., & Anantharam, P. (2015). Semantic gateway as a service architecture for iot interoperability. Paper presented at the 2015 IEEE International Conference on Mobile Services.
Fatland, D. R. (2011). Open Data Protocol (ODATA): A Practical Web Protocol For Data Query And Retrieval. Paper presented at the GSA Annual Meetings in Minneapolis, Session.
Franklin, C., & Hane, P. (1992). An Introduction to Geographic Information Systems: Linking Maps to Databases [and] Maps for the Rest of Us: Affordable and Fun. Database, 15(2), 12-15.
Gröger, G., & Plümer, L. (2012). CityGML–Interoperable semantic 3D city models. ISPRS Journal of Photogrammetry Remote Sensing, 71, 12-33.
Gröger, G., Kolbe, T. H., Nagel, C., & Häfele, K.-H. (2012). OGC city geography markup language (CityGML) encoding standard. In Open Geospatial Consortium standard.
Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge acquisition, 5(2), 199-220.
Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing? International journal of human-computer studies, 43(5-6), 907-928.
Gruen, A. (2013). SMART Cities: The need for spatial intelligence. Geo-spatial Information Science, 16(1).
Guney, C. (2016). Rethinking GIS Towards The Vision Of Smart Cities Through CityGML. Paper presented at the International Archives of the Photogrammetry, Remote Sensing Spatial Information Sciences, Turkey.
ITU-T. (2012). Overview of Internet of Things.
Jing, C., Du, M., Li, S., & Liu, S. (2019). Geospatial Dashboards for Monitoring Smart City Performance. Sustainability, 11(20), 5648.
Kang, H.-K., & Li, K.-J. (2017). A standard indoor spatial data model—OGC IndoorGML and implementation approaches. ISPRS International Journal of Geo-Information, 6(4), 116.
Kim, J.-S., Yoo, S.-J., & Li, K.-J. (2014). Integrating IndoorGML and CityGML for indoor space. Paper presented at the International Symposium on Web and Wireless Geographical Information Systems.
Kuo, C.-L., & Hong, J.-H. (2016). Interoperable cross-domain semantic and geospatial framework for automatic change detection. Computers Geosciences, 86, 109-119.
LandXML. (2000). LandXML. In Non-proprietary data standard for Land Professionals: LandXML. org.
Lee, J., Li, K.-J., Zlatanova, S., Kolbe, T. H., Nagel, C., & Becker, T. (2014). Ogc indoorgml. Open Geospatial Consortium standard.
Liang, S., Huang, C.-Y., & Khalafbeigi, T. (2016). OGC SensorThings API Part 1: Sensing, Version 1.0. Open Geospatial Consortium standard.
Liang, S., & Khalafbeigi, T. (2019). OGC SensorThings API Part 2–Tasking Core, Version 1.0. Open Geospatial Consortium standard.
Liu, X., Wang, X., Wright, G., Cheng, J. C., Li, X., & Liu, R. (2017). A state-of-the-art review on the integration of Building Information Modeling (BIM) and Geographic Information System (GIS). ISPRS International Journal of Geo-Information, 6(2), 53.
Métral, C., Billen, R., Cutting-Decelle, A.-F., & Van Ruymbeke, M. (2010). Ontology-based approaches for improving the interoperability between 3D urban models. Journal of Information Technology in Construction, 15, 169-184.
Miller, E. (1998). An introduction to the resource description framework. Bulletin of the American Society for Information Science and Technology, 25(1), 15-19.
Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad hoc networks, 10(7), 1497-1516.
Miraz, M. H., Ali, M., Excell, P. S., & Picking, R. (2018). Internet of Nano-Things, things and everything: Future growth trends. Future Internet, 10(8), 68.
OCF, O. C. F. (2019). OCF 2.1.0 Core Specification.
Peng, C., & Goswami, P. (2019). Meaningful integration of data from heterogeneous health services and home environment based on ontology. Sensors, 19(8), 1747.
Perallos, A., Hernandez-Jayo, U., Onieva, E., & Zuazola, I. J. G. (2015). Intelligent Transport Systems: Technologies and Applications: John Wiley & Sons.
Pescosolido, L., Berta, R., Scalise, L., Revel, G. M., De Gloria, A., & Orlandi, G. (2016). An IoT-inspired cloud-based web service architecture for e-Health applications. Paper presented at the 2016 IEEE International Smart Cities Conference (ISC2).
Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. Paper presented at the 2014 IEEE international conference on industrial engineering and engineering management.
Sánchez-Corcuera, R., Nuñez-Marcos, A., Sesma-Solance, J., Bilbao-Jayo, A., Mulero, R., Zulaika, U., . . . Almeida, A. (2019). Smart cities survey: Technologies, application domains and challenges for the cities of the future. International Journal of Distributed Sensor Networks, 15(6), 1550147719853984.
Soliman, M., Abiodun, T., Hamouda, T., Zhou, J., & Lung, C.-H. (2013). Smart home: Integrating internet of things with web services and cloud computing. Paper presented at the 2013 IEEE 5th international conference on cloud computing technology and science.
Sondheim, M., Gardels, K., & Buehler, K. (1999). GIS interoperability. Geographical Information Systems, 1, 347-358.
Sowe, S. K., Kimata, T., Dong, M., & Zettsu, K. (2014). Managing heterogeneous sensor data on a big data platform: IoT services for data-intensive science. Paper presented at the 2014 IEEE 38th International Computer Software and Applications Conference Workshops.
Stock, K., & Guesgen, H. (2016). Geospatial Reasoning With Open Data. In Automating Open Source Intelligence (pp. 171-204): Elsevier.
Swetina, J., Lu, G., Jacobs, P., Ennesser, F., & Song, J. (2014). Toward a standardized common M2M service layer platform: Introduction to oneM2M. IEEE Wireless Communications, 21(3), 20-26.
Vilgertshofer, S., Amann, J., Willenborg, B., Borrmann, A., & Kolbe, T. H. (2017). Linking BIM and GIS Models in Infrastructure by Example of IFC and CityGML. In Computing in Civil Engineering 2017 (pp. 133-140).
Wang, H. (2015). Sensing Information Modelling for Smart City. Paper presented at the 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity).
Wang, H., Gluhak, A., Meissner, S., & Tafazolli, R. (2013). Integration of BIM and live sensing information to monitor building energy performance. Paper presented at the The CIB 30th International Conference on Applications of IT in the AEC Industry.
Wang, J., Zhao, H., & Winter, S. (2015). Integrating sensing, routing and timing for indoor evacuation. Fire Safety Journal, 78, 111-121.
Xiao, G., Guo, J., Da Xu, L., & Gong, Z. (2014). User interoperability with heterogeneous IoT devices through transformation. IEEE Transactions on Industrial Informatics
10(2), 1486-1496.
Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things journal, 1(1), 22-32.
Zhu, W., Simons, A., Wursthorn, S., & Nichersu, A. (2016). Integration of CityGML and Air Quality Spatio-Temporal Data Series via OGC SOS. Paper presented at the Proceedings of the Geospatial Sensor Webs Conference (GSW), Munster, Germany.
指導教授 黃智遠(Chih-Yuan Huang) 審核日期 2020-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明