博碩士論文 106322093 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.235.182.206
姓名 胡育穎(Yu-Ying Hu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 混合羅吉特模型於運具選擇之應用-以中央大學到桃園高鐵站為例
(An Empirical Study on Mode Choice from NCU to Taoyuan HSR Station – An Implementation of Mixed Logit Model)
相關論文
★ 圖書館系統通閱移送書籍之車輛途程問題★ 起迄對旅行時間目標下高速公路匝道儀控之研究
★ 結合限制規劃法與螞蟻演算法求解運動排程問題★ 共同邊界資料包絡分析法在運輸業之應用-以國內航線之經營效率為例
★ 雙北市公車乘客知覺服務品質、知覺價值、滿意度、行為意向路線與乘客之跨層次中介效果與調節式中介效果★ Investigating the influential factors of public bicycle system and cyclist heterogeneity
★ A Mixed Integer Programming Formulation for the Three-Dimensional Unit Load Device Packing Problem★ 高速公路旅行時間預測之研究--函數資料分析之應用
★ Behavior Intention and its Influential Factors for Motorcycle Express Service★ Inferring transportation modes (bus or vehicle) from mobile phone data using support vector machine and deep neural network.
★ Preprocessing of mobile phone signal data for vehicle mode identification using map-matching technique★ 含額外限制式動態用路人均衡模型之研究
★ 動態起迄旅次矩陣推估模型之研究★ 動態號誌時制控制模型求解演算法之研究
★ 不同決策變數下動態用路人均衡路徑選擇模型之研究★ 動態人口分布最佳化控制之研究-雙層規劃模型之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 許多交通政策措施的擬定,取決於影響大眾選擇運具的各項因素,例如旅行時間、車費等等,因此了解影響運具選擇的因素具有相當大的實際意義。
本研究以中央大學到桃園高鐵站此路線為研究路線,鑒於桃園高鐵站,為眾多人運輸需求的產生點,而路線車班次少又經常誤點,很難預估到達時間,因此本研究會加入近年來進入台灣市場的Uber為可選擇運具之一,同時也會探討網約計乘車的商業模式和計程車派遣與Uber媒合差異、目前相關法令。
採用混合羅吉特模型了解運具間的重疊特性,其調查方法為結合顯示性偏好及敘述性偏好。模型中加入個人的社經背景,顯示出個人異質特性,使各種運具的選擇比例,呈現出的模式結果能夠與真實情況更加貼近。此模型可了解目前中央大學到桃園高鐵站兩地之間運具分配的狀況、旅運者之個人偏好對運具服務品質的感受影響其運具選擇之行為。
摘要(英) The effectiveness of numerous transportation policy measures be determined by mode choices, so that understanding the factors affecting these choices is of practical importance.
The mode choice between National Central University and Taoyuan High Speed Railway Station is taken for study because Taoyuan High Speed Railway (THSR) is of critical importance for staff of National Central University (NCU) to commute every day or go elsewhere for meetings. At present, only few shuttle buses are scheduled to connect THSR and NCU. Moreover, the scheduled busses are often not dispatched on time and delayed arrival times were commonly observed. Therefore, this study will add Uber, which has entered Taiwan in recent years, as one of the optional transportation. At the same time, it will also explore the business model of online taxi service, the difference between taxi dispatch and Uber platform media (matchmaking), as well as the decree of Uber amended by the Ministry of Transportation and Communications.
Mixed Logit Model (ML) was employed to study the mode choice behavior of travelers /passengers. The investigation method of which was combining revealed preference (RP) and stated preference (SP). The socioeconomic status (SES) of individuals is added to the model, which shows the characteristics of personal heterogeneity, so that the selection ratio of various transportation and the results of the model can be closer to the real situation.
This model can understand the current situation of transportation distribution between two places of NCU to THSR and the feeling of respondent′s personal preference to the quality of service of transportation affects the behavior of transportation choice.
關鍵字(中) ★ 離散選擇模型
★ 混合羅吉特
★ 誤差成份羅吉特
★ 異質性
關鍵字(英) ★ discrete choice model
★ mixed logit model
★ error component logit model
★ unobserved heterogeneity
論文目次 摘要 i
Abstract ii
List of Figures v
List of Tables vi
Chapter 1 Introduction 1
1.1 Research background 1
1.2 Research objectives 3
1.3 Flow chart 4
Chapter 2 Literature review 5
2.1 Uber introduction 5
2.2 Disaggregate choice theory 12
2.2.1 Multinomial Logit 15
2.2.2 Nested Logit 16
2.2.3 Mixed Logit Model 17
2.3 Summary 20
Chapter 3 Methodology 23
3.1 Multinomial Logit 23
3.2 Nested Logit 23
3.3 Mixed Logit Model 24
Chapter 4 Data collection 26
4.1 Combining revealed preference and stated preference 26
4.1.1 Content of questionnaire design 27
4.2 Empirical results 32
4.3 Results of error component logit 42
4.4 Comparing models 47
4.5 Model test 50
4.6 Willingness to pay 52
4.7 Summary 53
Chapter 5 Conclusions and suggestions 54
5.1 Conclusions 54
5.2 Future research 55
References 57
Appendix Questionnaire 61
參考文獻 [1] Algers, S., Bergström, P., Dahlberg M., Dillén, J.L., 1998. Mixed Logit Estimation of the Value of Travel Time. Working Paper, Department of Economics, Uppsala University.
[2] Bansal, P., Daziano, R. A., Achtnicht M., 2017. Extending the logit-mixed logit model for a combination of random and fixed parameters. Working paper, School of Civil and Environmental Engineering, Cornell University, United States of America.
[3] Beville, S. and Kerr, G., 2009. Fishing for more understanding: a mixed logit-error component model of freshwater angler site choice. The 53rd annual Australian Agricultural and Resource Economics Society conference, Lincoln University, New Zealand.
[4] Borah B. J., 2006. A mixed logit model of health care provider choice: analysis of NSS data for rural India. Health Econ, Vol. 15, pp. 915-932.
[5] Bradley, M. and Daly, A., 1996. Estimation of Logit Choice Models Using Mixed Stated-Preference and Revealed-Preference Information, The 6th International Conference on Travel Behaviour, Quebec, Canada.
[6] Brownstone, D., Bunch, D.S., Train, K., 2000. Joint Mixed Logit models of stated and revealed preferences for alternative-fuel vehicles, Transportation Research B, Vol. 34, pp. 315-338.
[7] Brownstone, D., 2001. Discrete Choice Modelling for Transportation, Travel Behaviour Research: The Leading Edge, Pergamon Press, pp. 97-124.
[8] Carrasco, J.A. and Ortúzar, J.D., 2002. Review and assessment of the nested logit model. Transport Reviews, Vol. 22, pp. 197-218.
[9] Chang, H.H.,2017. The Economic Effects of Uber on Taxi Drivers in Taiwan, Journal of Competition Law and Economics, pp. 1-26.
[10] Chen, H.K., 2009. Transport Planning Network. Tsang Hai Book Publishing Co, first edition, Taipei.
[11] Chen, T. M., 2014. An Analysis on the Business Model and Legal Controversies of Uber. Master’s Thesis, National Cheng Chi University, Taiwan.
[12] Chen, H.W., 2002. A Study On Intercity Travelers′ Mode Choice Behavior. Master’s Thesis, Feng Chia University, Taiwan.
[13] Cramer, J., Krueger, AB., 2016 Disruptive change in the taxi business: The case of Uber. Working paper, National Bureau of Economic Research, Cambridge, MA.
[14] Chou, P. Y., 2012. Combining revealed preference and stated preference data to analyze access mode choice for intercity travel. Master’s Thesis, Feng Chia University, Taiwan.
[15] Chu A., 2015. A comprehensive mixed logit analysis of crash type conditional on a crash event. DISS, Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, United States of America.
[16] Flores, O., Rayle, L., 2017. How Cities Use Regulation for Innovation: The Case of Uber, Lyft and Sidecar in San Francisco. Transportation Research Procedia, Vol. 25, pp. 3760-3772.
[17] Fox, J.T., Kim, K., Ryan, S., Bajari, P., 2012. The random coefficients logit model is identified, Journal of Econometrics, Elsevier, Vol. 166, No. 2, pp. 204-212.
[18] Greene, W.H., 2002. NLOGIT (Version 5), Econometric Software Inc. Plainview, New York.
[19] Greene, W.H., Hensher, D.A., 2013. Revealing additional dimensions of preference heterogeneity in a latent class mixed multinomial logit model, Applied Economics, Vol. 45, issue 14, pp. 1897-1902.
[20] Hess, S., Bierlaire, M., Polak, J.W., 2004. Estimation of value-of-time using Mixed Logit models, Technical report, RO-040528.
[21] Hess, S. and Polak, J.W., 2009. Mixed Logit Modelling of Parking Type Choice Behaviour, Transportation Statistics, J.D. Ross Publishing, pp. 77-102.
[22] Hensher, D.A., Greene, W.H., 2002. The Mixed Logit Model: The State of Practice. Working Paper ITS-WP-02-01, University of Sydney, Australia.
[23] Hensher, D.A., Stopper P., Bullock, P., 2003. Service quality-developing a service quality index in the provision of commercial bus contracts, Transportation Research A, Vol. 37, pp. 499-517.
[24] Hicks, R. L., 2002. A Comparison of Stated and Revealed Preference Methods for Fisheries Management. Selected Paper, The College of William and Mary, California.
[25] Jones, S., Hensher, D.A., 2004. Predicting Firm Financial Distress: A Mixed Logit Model. The Accounting Review (American Accounting Association), Vol. 79, No. 4, pp. 1011-1038.
[26] Kacker, R.N., Lagergren, E.S., Filliben, J.J., 1991. Taguchi’s Orthogonal Arrays Are Classical Designs of Experiments. Journal of Research of the National Institute of Standards and Technology, Vol. 96, No. 5, pp. 577-591.
[27] Koppelman, F.S. and Sethi, V., 2000. Closed Form Discrete Choice Models. Handbook of Transport Modeling 1, Pergamon Press, pp. 211-222.
[28] Lavasania, M., Hossana, M.S., Asgarib, H., Jin, X., 2017. Examining methodological issues on combined RP and SP data. Transportation Research Procedia, Vol. 25, pp. 2330-2343.
[29] Markandya, A., Nunes, P.A.L.D., 2011. Introduction to Economic Valuation Methods. Research Tools in Natural Resource and Environmental Economics, Chapter 5, pp. 143-187.
[30] McFadden, D., 1979. Quantitative Methods for Analyzing Travel Behavior of Individuals: Some Recent Developments., Cowles Foundation Discussion Papers 474, Cowles Foundation for Research in Economics, Yale University.
[31] Mariel, P., Ayala, A. De., Hoyos, D., Abdullah, S., 2013. Selecting Random Parameters in Discrete Choice Experiment for Environmental Valuation:A Simulation Experiment. Journal of choice modelling, Vol. 7, pp. 44-57.
[32] Mauricio Sillano, Juan de Dios Ortúzar., 2005. Willingness-to-Pay Estimation with Mixed Logit Models: Some New Evidence, SAGE journals, Vol. 37, issue 3, pp. 525-550.
[33] ROC Ministry of Labor Website, 2019. https://www.mol.gov.tw/topic/3067/5990/13171/19154/ (Accessed 10/6/2019)
[34] Munizaga, M.A. and Alvarez-Daziano, R., 2001. Mixed Logit vs. Nested Logit and Probit models, Departamento de Ingeniería Civil, Universidad de Chile, Santiago, Chile.
[35] Rasciute, S and Pentecost, E J., 2008. The Location of Foreign Direct Investment in the Central and Eastern European Countries: A Mixed Logit and Multilevel Data Approach. Discussion Paper, Department of Economics, Loughborough University, United Kingdom.
[36] Revelt, D., and Train, K., 1997. Mixed logit with repeated choices: households′ choices of appliance efficiency level. Review of Economics and Statistics, Vol. 80, No. 4, pp. 647-657.
[37] Rouwendal Jan., Levkovich O.D., Mulalic I., 2017. Discrete Choice Models for Commuting Interactions. TI Discussion Paper Series, Vol. 17, No. 067/VIII.
[38] Sener, I.N., Lee, K., Durand, C.P., Oluyomi, A., Kohl, H.W., 2019. Intention to use light-rail transit in Houston, Texas, United States: Findings from the Travel-Related Activity in Neighborhoods study. International Journal of Sustainable Transportation.
[39] Steele, F., Washbrook, E., Charlton, C., Browne, W.J., 2016. A Longitudinal Mixed Logit Model for Estimation of Push and Pull Effects in Residential Location Choice. Journal of the American Statistical Association., Vol. 111, No. 515, pp. 1061-1074.
[40] Train, K., 1999. Halton Sequences for Mixed Logit, Working Paper, Department of Economics, University of California, Berkeley.
[41] Train, K., 2002. Discrete Choice Methods with Simulation, Cambridge University Press, University of California, Berkeley.
[42] Train, K. and Weeks, M., 2005. Discrete choice models in preference space and willing to-pay space., Applications of Simulation Methods in Environmental and Resource Economics, Springer Publisher, Dordrecht, chapter 1, pp. 1-16.
[43] Transport Analysis Guidance (TAG), 2014. Supplementary guidance mixed logit models. Transport Analysis Guidance, Department for Transport., United Kingdom.
[44] Uber Wikipedia Website, 2019. https://en.wikipedia.org/wiki/Uber. (Accessed 18/3/2019)
[45] Wang, M. C., 2015. Mode Preference for High-Speed Rail Travelers under Service Disruptions. Master’s Thesis, Feng Chia University, Taiwan.
[46] Likert scale Wikipedia Website, 2018. https://en.wikipedia.org/wiki/Likert_scale. (Accessed 17/4/2019)
[47] Wu, C.C., 2005. Heterogeneity & Similarity of Housing Choice- Cases on The Choice of Urban Hierarchy in Taiwan. Master’s Thesis, National Cheng Kung University, Taiwan.
[48] Yang, C.S., 2010. Mixed Generalized Extreme Value Models of Metro Access Mode Choice. Master’s Thesis, Feng Chia University, Taiwan.
[49] Yang, C.W., Tsai, M.C., Chang, C.C., 2015. Investigating the joint choice behavior of intercity transport mode and high-speed rail cabin with a strategy map, Journal of Advanced Transportation, Vol. 49, pp. 297-308.
[50] Yang, C.W. and Wang, H.C., 2017. A comparison of flight routes in a dual-airport region using overlapping error components and a cross-nested structure in GEV models. Transportation Research A, Vol. 95, pp. 85-95.
[51] Wen, C.H., Koppelman, F.S., 2001. The Generalized Nested Logit Model. Transportation Research B, Vol. 35, pp. 627-641.
[52] Williams, H.C.W.L., 1977. On the Formation of Travel Demand Models and Economic Evaluation Measures of User Benefit, Environment and Planning, Vol. 9A, pp. 285-344.
指導教授 陳惠國(Huey-Kuo Chen) 審核日期 2020-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明