博碩士論文 106323009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.138.102.82
姓名 廖哲穎(Che-Ying Liao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 對於遠程超聲波檢查機器人機械手控制裝置的設計
(Design of a Control Device for a Tele-echography Robotics Manipulator)
相關論文
★ 神經內視鏡的球面解耦機械手臂設計★ 新型機電整合之多色3-D列印機
★ Workspace Characterization of a 3-RRR Spherical Parallel Mechanism★ Design of a Spherical Reconfigurable Linkage for the Control of Mechanism Center of Rotation
★ Formulation of a New Index for the Evaluation of Mechanism Workspace★ Kinematic Optimization of a Reconfigurable Spherical Parallel Mechanism for Robotic Assisted Craniotomy
★ Identification of Spherical Mechanism Parameter Errors using a Genetic Algorithm★ Kinematic Design of Double Pantographic Linkage for the Tele-Echography on Intra-Incubated Newborns
★ Design of a Five-Degrees of Freedom Statically Balanced Mechanism with Multi-Directional Functionality★ 應用於股骨復位手術中之機器人機構設計
★ Design of an Augmented Clamping Instrument for Advanced Aneurysm Surgery★ Contribution to the Design of a Robotic Platform for Liposuction
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 新生兒的頭骨在 9 至 18 個月大之前具有解剖學特殊性:它由幾個分開的骨頭組成,這些骨頭留下一個稱為囟門的軟組織區。骨骼的逐漸骨化最終會閉合顱骨,形成一個單一的骨骼。由於囟門柔軟,可以使用超音波進行大腦檢查。這種醫療護理稱為顱內超聲波檢查(ICU)。 然而,經常對待在觀察室裡保溫箱內的新生兒進行檢查,這使得醫生因為此動作的不合符效益而感到不舒服。
為了改進這種類型的研究,提出了用於遠程ICU檢查的遙控機器人。 由於患者位於保溫箱內,因此開發了具有特定運動學的特定機器人操縱器,允許在保溫箱內使用的導航超聲探頭。為了完成遙測機器人系統,設計了一個控制裝置,讓兒科醫生可以遠程控制機械手臂。研究主設備的運動學以匹配從機械手臂並允許直接控制。此外,還實現了靜態平衡功能,允許設備自動補償重力效應。這不僅提高了操作者的舒適度,而且防止了操作者釋放設備時設備掉落。設計和製造原型用於測試。給出了裝置的靜平衡,並進行了控制實驗,證明了主控裝置的可行性。
摘要(英) The skull of newborn children has an anatomical particularity before the age of 9 to 18 months: it is composed of several separated bones section that leaves a zone of soft tissues called the fontanelle. The progressive ossification of the bone will eventually close the skull forming one single bone. Due to the softness of the fontanelle, it is possible to use ultrasound to perform the examination of the brain. This medical care is called Intracranial Ultrasound (ICU) examination. However, it is often performed on newborns inside neonatal incubators in the observation room, which makes it uncomfortable and very repetitive for the doctor.
To improve this type of examination, the tele-operated robot for remote ICU examination is proposed. As the patient is located inside an incubator, a specific robotic manipulator had been developed with specific kinematic allowing the navigation of an ultrasound proves inside the incubator. In order to complete the tele-echography robotic system, a control device is designed to allow the pediatric doctor to remotely control the manipulator. The kinematics of the master device is studied to match the slave manipulator and allow an intuitive control. Also, a static balancing feature is implemented to allow the device to automatically compensate for the gravitational effect. This not only improves the operator’s comfort but also prevent the device from dropping when it is released by the operator. A prototype is designed and fabricated for testing. The static balancing of the device is shown and the control experiment is carried out, proving the feasibility of the master control device.
關鍵字(中) ★ 機器人學
★ 遠端超聲成像術
★ 運動學
★ 控制裝置
★ 靜平衡
關鍵字(英) ★ Robotics
★ tele-echography
★ kinematics
★ control device
★ static balancing
論文目次 Abstract i
English Abstract ii
Acknowledgments iii
Table of content iv
List of Figures vi
List of Table viii
Explanation of Symbols ix
1. Introduction 1
1-1 Intracranial echography on incubated newborn 1
1-2 Literature review on tele-echography robot 2
1-3 Examples of control devices 5
1-4 Objectives and summary 6
2. Kinematic of the control device 8
2-1 Kinematic of the slave robot 8
2-2 Homothetic kinematics of the master device 11
3. Static balancing of the control device 15
3-1 Potential energy conservation method 15
3-2 Evolution of the gravitational potential energy 16
3-3 Generation of elastic potential energy 17
3-4 Static balancing results 19
4. Mechatronic design of the control device 21
4-1 Mechanical design and parameters 21
4-2 Simulation and prototype testing 23
5. Conclusion 29
Reference 30
參考文獻 [1] T.L. Slovis, L.R. Kuhns, “Real-time sonography of the brain through the anterior fontanelle. American Journal of Roentgenology,” 136, pp. 277-286, 1981.
[2] K.E. Pape, G. Cusick, R.J. Blackwell, M.T.W. Houang, A. Sherwood, R.J. Thorburn, E.O.R. Reynolds, “Ultrasound Detection of Brain Damage in Preterm Infants,” The Lancet, Vol. 313(8129), pp. 1261-1264, 1979.
[3] W.-S. Hsieh, S.-F. Jeng, Y.-L. Hung, P.-C. Chen, H.-C. Chou, P.-N. Tsao, “Outcome and hospital cost for infants weighing less than 500 grams: A tertiary centre experience in Taiwan,” Journal of Paediatrics and Child Health, Vol. 43(9), pp. 627-631, 2007.
[4] S.E. Salcudean, G. Bell, S. Bachmann, W.H. Zhu, P. Abolmaesumi, P.D. Lawrence, “Robot-assisted diagnostic ultrasound-design and feasibility experiments,” Medical Image Computing and Computer-Assisted Intervention (MICCAI’99), pp. 1062-1071, 1999.
[5] M. Mitsuishi, S. Warisawa, T. Tsuda, T. Higuchi, N. Koizumi, H. Hashizume, K. Fujiwara, “Remote Ultrasound Diagnostic system,” IEEE International Conference on Robotics & Automation (ICRA 2001), pp. 1567-1574, 2001.
[6] A. Vilchis, J. Troccaz, P. Cinquin, K. Masuda, F. Pellissier, “A new robot architecture for tele-echography,” IEEE Transaction on Robotics and Automation, Special issue on Medical Robotics, Vol. 19, No.5, pp. 922-926, 2003.
[7] F. Najafi, “Design and prototype of a robotic system for remote palpation and ultrasound imaging,” M.Sc. thesis, University of Manitoba, 2004.
[8] F. Najafi, N. Sepehri, “A robotic wrist for remote ultrasound imaging,” Mechanism and Machine Theory, Vol. 46, Issue 8, pp. 1153-1170, 2011.
[9] A. Gourdon, P. Poignet, G. Poisson, P. Vieyres, P. Marche, “A new robotic mechanism for medical application,” Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 33-38, 1999.
[10] F. Courrèges, G. Poisson, P. Vieyres, A. Vilchis, “Real time exhibition of a simulated space tele-echography using an ultralight robot,” International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2003.
[11] C. Delgorge, F. Courreges, L. Bassit, C. Novales, C. Rosenberger, N. Smith-Guerin, C. Bru, R. Gilabert, M. Vannoni, G. Poisson, P. Vieyres, “A Tele-Operated Mobile Ultrasound Scanner Using a Light-Weight Robot,” IEEE Trans. Inf. Technol. Biomed, Vol. 9, No. 1, pp. 50-58, 2005.
[12] C. Canero, N. Thomos, G. Triantafyllidis, G. Litos, M. Strintzis, “Mobile Tele-Echography: User Interface Design,” IEEE Trans. Inf. Technol. Biomed, Vol. 9, No. 1, pp. 44-49, 2005.
[13] K. Ito, T. sayama, H. Iwata, S. Sugano, “A blood flow measurement robotic system: Ultrasound visual servoing algorithms under pulsation and displacement of an artery,” Journal of Robotics and Mechatronics, Vol. 24, Issue 5, pp. 773-781, 2012.
[14] Y. Tsumaki, H. Naruse, D.N. Nenchev, M. Uchiyama, “Design of a Compact 6-DOF Haptic Interface,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 2580-2585, 1998.
[15] L. Birglen, C. Gosselin, N. Pouliot, B. Monsarrat, T. Lalibert, “SHaDe, A New 3-DOF Haptic Device,” IEEE Transaction on Robotics and Automation, Vol. 18, No. 2, pp. 166-175, 2002.
[16] F. Najafi, N. Sepehri, “A novel hand-controller for remote ultrasound imaging,” Mechatronics, Vol. 18, No. 10, pp. 578-590, 2008.
[17] H. Saafi, M.A. Laribi, S. Zeghloul, “Redundantly actuated 3-RRR spherical parallel manipulator used as a haptic device: improving dexterity and eliminating singularity,” Robotica, Vol. 33, pp. 1113-1130, 2015.
[18] H. Saafi, M.A. Laribi, S. Zeghloul, “Forward kinematic model improvement of a spherical parallel manipulator using an extra sensor,” Mechanism and Machine Theory, Vol. 91, pp. 102-119, 2015.
[19] G. Poisson, P. Vieyres, F. Courreges, N Smith-Guerin, C. Novales, “Ultrasound imaging simulator,” European Patent EP1333412.
[20] T. Essomba, J.-Y. Hsieh, “Kinematic Design of a Double Pantographic Mechanism for the Intracranial Echography on Incubated Newborns,” Robotics and Mechatronics, Mechanisms and Machine Science, Vol. 78, pp.432-443, 2020.
[21] J.-Y. Hsieh, “Kinematic Design of Double Pantographic Linkage for the Tele-Echography on Intra-Incubated Newborns,” MSc thesis, National Central University, 2019.
[22] T. Rahman, R. Ramanathan, R. Seliktar, W. Harwin, “A Simple Technique to Passively Gravity-Balance Articulated Mechanisms,” ASME Journal of Mechanical Design, Vol. 117, Issue 4, pp. 655-658, 1995.
[23] T. Essomba, “Design of a Five-Degrees of Freedom Statically Balanced Mechanism with Multi-Directional Functionality,” Robotics, Vol. 10, Issue 1, 2021.
指導教授 伊泰龍(Térence Essomba) 審核日期 2021-9-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明