博碩士論文 106323012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.204.227.117
姓名 鄭漢威(Han-Wei Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以有限元素法與反應曲面法分析增量式板金成形無
相關論文
★ 中尺寸LED背光模組之實驗研究★ 利用有限元素法與反應曲面法探討 金屬成型問題之最佳化設計-行星路徑旋轉鍛造傘齒輪為例
★ 以反應曲面法進行行動電話卡勾之最佳化設計★ 以微分式內涵塑性理論分析材料受軸向循環負載之塑性行為
★ A1070在累進式背擠製下的機械性質與微結構之研究★ 超音波輔助沖壓加工之應用-剪切、引伸與等通彎角擠製
★ 應用多體動力學於具循環氣體負載之迴轉式壓縮機振動預測模型建立★ 以有限元素法與反應曲面法分析螺旋傘齒輪之旋轉鍛造最佳化設計
★ 超音波振動輔助鋁合金6061及低碳鋼S15C拉伸試驗之研究★ 旋轉鍛造螺旋齒輪製程分析
★ 等通道扭轉彎角擠製之有限元素法及反應曲面法分析★ 以有限元素法與反應曲面法分析螺旋傘齒輪之雙錐輥旋轉鍛造最佳化設計
★ 引伸成形加工問題之有限元素分析★ 應用流函數法分析軸對稱熱擠製加工問題
★ 非對稱壓延加工問題之有限元素法分析★ 基因演算法於幾何形狀最佳化設計之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文透過有限元素軟體Deform-3D進行方杯增量式板金成形模擬分析,探討沖頭及承板幾何參數對成品最薄厚度、厚度均勻性及最大成形力之影響,並找出最適合之加工條件,達到提升最薄厚度、厚度均勻性及降低成形力的目的。本文設計之增量式板金成形之沖頭及乘板幾何參數包括沖頭邊長、沖頭角隅圓角、沖頭圓角及承板圓角。實驗設計法採用適合建構二階反應曲面之Box-Behnken四因子三水準設計,共計25組模擬實驗點,利用統計軟體Minitab依Deform-3D有限元素軟體分析之結果進行迴歸分析,以建立成品最薄厚度、厚度均勻性及最大成形力之預測模型,進而探討各因子對品質特性之影響,並找出最佳化條件。以有限元素模擬結果對本文所建溝之預測模型進行檢驗,其結果顯示預測模型具有一定準確度。
摘要(英) An FEM model of incremental sheet metal formed square-cup is developed under the DEFORM-3D software. To observe the influence of punch and back plate geometric parameters to the thinnest thickness, thickness uniformity and maximum forming force of the finished. Also, intend to find the incremental forming condition for optimum design.
  The factors in the design include the punch geometric parameters, such as side length L, punch corner radius R_cp, punch radius R_p, and the factors of back plate geometric parameters include back plate corner R_b. The experiment adopts 25 groups of analogs with the Box-Behnken design. Using the Minitab software to do the regression analysis and develop the prediction equations. By doing so, it’s excepted using the FEM model and surface response methodology to find the optimum design of the thinnest thickness, thickness uniformity, and maximum forming force. Through the results of FEM simulations to verify the prediction equations with considerable accuracy.
關鍵字(中) ★ 增量式板金成形
★ 有限元素分析
關鍵字(英) ★ Box-Behnken
論文目次 摘要 v
Abstract vi
致謝 vii
圖目錄 xi
表目錄 xiv
符號說明 xvi
第一章 導論 1
1-1前言 1
1-2文獻回顧 2
1-2-1板金成形 2
1-2-2增量成形 3
1-3研究動機與目的 8
第二章 基本理論 10
2-1 單點增量成形之成品厚度 10
2-2單點增量成形應力理論 11
2-2-1圓周方向應力 13
2-2-2厚度方向應力 13
2-2-3經緯方向應力 13
2-3 Deform-3D破壞問題處理 16
2-4延性破壞準則 18
第三章 有限元素法與實驗設計法 21
3-1有限元素法 21
3-1-1有限元素法基本介紹 21
3-1-2 Deform-3D使用流程 22
3-2有限元素模擬設定 24
3-2-1引伸成形模擬驗證 24
3-2-2增量成形之模具建立及加工參數 26
3-2-3材料及臨界破壞值設定 30
3-2-4板材最薄厚度量測及厚度均勻性評估 31
3-2-5增量成形有限元素網格收斂性分析 33
3-3反應曲面法 (Response Surface Methodology,RSM) 37
3-3-1迴歸分析基本理論 37
3-3-3模擬實驗因子與水準 40
3-3-4中心點實驗 40
3-3-5中心點路徑改善 42
3-3-6 Box-Behnken實驗設計法 43
第四章 結果與討論 45
4-1模擬結果 45
4-1-1方杯增量成形分析結果例 45
4-1-2中心點實驗結果 50
4-1-3中心點路徑改善結果 55
4-1-4第二次中心點實驗結果 61
4-1-5 Box-Behnken實驗設計點結果 66
4-2迴歸模型建構 68
4-2-1最薄厚度之迴歸分析 68
4-2-2厚度均勻性之迴歸分析 71
4-2-3最大成形力之迴歸分析 74
4-2-4殘差分析 77
4-3 迴歸模型檢驗 81
4-3-1模型檢驗點&單因子檢驗點建立 81
4-3-2檢驗點迴歸模型建立 85
4-4增量成形最佳化分析 97
4-4-1最薄厚度最佳化 97
4-4-2厚度均勻性最佳化 99
4-4-3最佳化分析 102
4-5增量成形加工分析 104
4-5-1增量成形&引伸成形比較 104
4-5-2深度進給量探討 107
4-5-3成形極限深度 109
第五章 結論與建議 110
5-1結論 110
5-2建議 111
參考文獻 112
參考文獻 [1]C.H. Lee and H. Huh, “ ”, Journal of Material Processing Technology, Vol. 82, pp. 145-155, 1998.

[2]S.P. Keeler and W.A. Backofen, “Plastic instability and fracture in sheets stretched over rigid punches”, Trans ASM, Vol. 56, pp. 25, 1963.

[3]Goodwin, G. M., “Application of Strain Analysis on Sheet Metal Forming Problems in The Press Shop”, SAE Paper No. 680093, 1968.

[4]Majlessi S.A and Lee D., “Deep Drawing of Square-Shapes Sheet Metal Parts, Part1:Finite Element Analysis”, Transactions of the ASME Journal of Engineering for Industry, Vol. 115, pp. 102-109, 1993.

[5] Fuh-Kuo Chen and Ming-The Chao, “Deformation Mechanics of the Springback in U-Bending”, Applied Mechanics and Engineering, Vol. 2, No2, pp.379-403,1997.

[6] C. H. Lee and S. Kobayashi, “Elastoplastic Analysis of Plane Strain and Axisymmetric Flat Punch Indentation by the Finite Element Method”, International Journal of Mechanics Science, Vol. 12, pp. 349-370, 1973.

[7] Li Y., Daniel W.J., Liu Z., Lu H., Meehan P.A., “Deformation Mechanics and Efficient Force Prediction in Single Point Incremental Forming”, Journal of Materials Processing Technology, Vol.221, pp. 100-111, 2015.

[8] J. Jeswiet, F. Micari, G. Hirt, A. Bramley, J. Duflou, J. Al-wood, “Asymmetric Single Point Incremental Forming of Sheet Metal”, CIRP Annals - Manufacturing Technology, 54, pp. 623-649, 2005.

[9]A. Petek, K. Kuzman, J. Kopac, “Deformations and Force Analysis of Single Point incremental Sheet Metal Forming”, Archives of Materials Science and Engineering, Vol. 35, pp. 107-116, 2009.

[10]M. B. Silva, M. Skjoedt, P. A. F. Martins, N. Bay, “Revisiting the Fundamentals of Single Point Incremental Forming by means of Membrane Analysis”, International Journal of Machine Tools & Manufacture, Vol. 48, pp. 73-83, 2008.
[11]P. A. F. Martins, N. Bay, M. Skjoedt, M. B. Silva, “Theory of single point incremental forming”, CIRP Annals - Manufacturing Technology, 57, pp. 247-252, 2008.

[12]J. Verbert, B Belkassem, C Henrard, A. M. Habraken, J. Gu, H. Sol, B. Lauwers, J. R. Duflou, “Multi-Step toolpath approach to overcome forming limitations in single point incremental forming”, International Journal of Material Forming, Vol. 1, pp. 1203-1206, 2008.

[13]郭賢輝,「以CNC五軸加工法進行板金單點增量成形之實驗研究」,國立台北科技大學,碩士論文,民國103年。

[14]林宏祈,「以田口方法探討AA1050鋁板單點增量成形之厚度改善」,國立台北科技大學,碩士論文,民國102年。

[15]B. Lu, J. Chen, H. Ou, J. Cao, “Feature-based tool path generation approach for incremental sheet forming process”, Journal of Material Processing Technology, Vol. 213, pp. 1221-1233, 2013.

[16]E. Hagan, J. Jeswiet, “Analysis of surface roughness for part formed by computer numerical controlled incremental forming”, Journal of Engineering Manufacture, Vol. 218, pp. 1307-1312, 2004.

[17]On-Uma Lasunon, “Surface roughness in incremental sheet metal forming of AA5052”, Advanced Materials Research, Vol 753-755, pp. 203-206, 2013.

[18]K. Hamilton, J. Jeswiet, “Single point incremental forming at high feed rates and rotational speeds: Suface and structural consequence”, CIRP Annals-Manufacturing Technology, Vol. 59, pp.311-314, 2010.

[19]林啟正,「單點增量成形法之螺旋刀具路徑規劃及偏心錐管製作」,國立台北科技大學,碩士論文,民國103年。

[20]J. R. Duflou, J. Verbert, B. Belkassem, J. Gu, H. Sol, C. Henrard, A. M. Habraken, “Process window enhancement for single point incremental forming through multi-step toolpaths”, CIRP Annals-Manufacturing Technology, Vol. 57, pp. 253-256, 2008.
[21]Fan G, Gao L, “Mechanical property of Ti-6Al-4V sheet in one-side electric hot incremental forming”, International Journal of Advanced Manufacturing Technology, Vol. 72, pp.989-994, 2014.

[22]G. Ambrogio, L. Filice, F. Gagliardi, “Formability of lightweight alloys by hot incremental forming sheet forming”, Materials and Design, Vol. 34, pp. 501-508, 2012

[23]Guoqiang Fan, L. Gao, G Hussain, Zhaoli Wu, “Electric hot incremental forming: A novel technique”, International Journal of Machine Tools & Manufacture, Vol. 48, pp. 1688-1692, 2008.

[24]D. Y. Yang, W. J. Chung, H. B. Shim, “Rigid-plastic finite element analysis of sheet metal forming process with initial guess generation”, International Journal of Mechanical Sciences, Vol. 32, pp. 687-708, 1990.

[25]D. Young, J. Jeswiet, “Wall thickness variations in single-point incremental forming”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufactire, Vol. 218, pp.1453-1459, 2004.

[26] “Deform-3D Version 11.0 User’s Manual”, Scientific Forming Technologies Corporation.

[27]H.S. Alsos, “A comparative study on shell element deletion and element splitting”, Impact & Crashworthiness Laboratory, Report No. 127, MIT, pp.1-94, 2004.

[28]H.C. Lee, J.S. Choi, K.H. Jung and Y.T. Im, “Application of element deletion method for numerical analyses of cracking”, Journal of Achievement in Materials and Manufacturing Engineering, Vol. 35, pp.154-161, 2009.

[29]A.M. Frudenthal, “The Inelastic Behaviour of Engineering Materials snd Structure”, John Wiley, 1950.

[30]M.G. Cockroft and D.J. Latham, “Ductility and the workability of metals”, Journal Institute of Metals, Vol. 96, pp.33-39, 1968.
[31]P. Brozzo, B. Deluca and R. Rendina, “A new method for the prediction of formability limits in metal sheets”, sheet metal forming and formability, Proc. 7th Biennial Conf. Int. Deep Drawing Research Group, 1972.

[32]S.I. Oh, C.C. Chen, and S. Kobayashi, “Ductility Fracture in Axisymmetric Extrusion and Drawing”, J. Eng. Ind. Trans. ASME, Vol. 101, pp.36-44, 1979.

[33]B. Dodd and Y. Bai, “Ductile Fracture and Ductility”, Academic Press, London, 1987.

[34]F.A. McClintock, A criterion for ductile fracture by the growth of holes, ASME Journal of applied mechanics, Vol. 35, pp.363-371, 1968.

[35]M. Oyane, T. Stato, K. Okimoto and S. Shima, “Criteria for ductile fracture and their applications”, Journal of Material Processing Technology, Vol. 4, pp.65-81, 1980.

[36]陳耀茂,工程統計學,五南出版社,民國104年12月。

[37]葉怡成,實驗設計法:製程與產品最佳化,五南出版社,民國90年6月。
指導教授 葉維磬(Wei-Ching Yeh) 審核日期 2019-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明