博碩士論文 106323021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:34.204.176.125
姓名 楊天宇(Tien-Yu Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以有限元素法與反應曲面法分析螺旋傘齒輪之雙錐輥旋轉鍛造最佳化設計
相關論文
★ 中尺寸LED背光模組之實驗研究★ 利用有限元素法與反應曲面法探討 金屬成型問題之最佳化設計-行星路徑旋轉鍛造傘齒輪為例
★ 以反應曲面法進行行動電話卡勾之最佳化設計★ 以微分式內涵塑性理論分析材料受軸向循環負載之塑性行為
★ A1070在累進式背擠製下的機械性質與微結構之研究★ 超音波輔助沖壓加工之應用-剪切、引伸與等通彎角擠製
★ 應用多體動力學於具循環氣體負載之迴轉式壓縮機振動預測模型建立★ 以有限元素法與反應曲面法分析螺旋傘齒輪之旋轉鍛造最佳化設計
★ 超音波振動輔助鋁合金6061及低碳鋼S15C拉伸試驗之研究★ 旋轉鍛造螺旋齒輪製程分析
★ 等通道扭轉彎角擠製之有限元素法及反應曲面法分析★ 以有限元素法與反應曲面法分析增量式板金成形
★ 引伸成形加工問題之有限元素分析★ 應用流函數法分析軸對稱熱擠製加工問題
★ 非對稱壓延加工問題之有限元素法分析★ 基因演算法於幾何形狀最佳化設計之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文透過有限元素軟體Deform-3D進行雙錐輥旋轉鍛造螺旋傘形齒輪模擬分析,探討加工參數以及胚料幾何參數對鍛造最大成形力以及填充率的影響,並找出最合適之加工條件,達到提升填充率及降低成形力的目的。本文設計之旋轉鍛造加工參數包含下模具每轉進給量以及上模自轉速度;胚料幾何參數包含胚料底部傾斜角及胚料下段內徑。實驗設計採用Box-Behnken四因子三水準設計,以建構二階反應曲面。本文共建立25組實驗點進行模擬分析,其中包含一組中心點實驗,再使用統計軟體Minitab對模擬結果進行回歸分析,建立最大成形力以及填充率之預測模型,進而探討各因子對品質特性的影響,並找出最佳化條件。以有限元素模擬結果對本文所建構之預測模型進行檢驗,其結果顯示預測模型具有一定的準確度。
摘要(英) An FEM model of rotary forging with double symmetry rolls of a spiral bevel gear is developed under the DEFORM-3D software. To observe the influence of work-piece geometry parameters and rotary forging process parameters to the forging maximum load and die-filling rate. Also, intend to find the rotary forging condition for optimum design.
The four factors in the design include the work-piece geometry parameters, such as bottom inclination angle ß and bottom diameter D, and rotary forging process parameters, such as rotation of the upper die n_2 and feed amount of per revolution S. The experiment adopts 25 groups of analogs with the Box-Behnken design. Using the Minitab software to do the regression analysis and develop the prediction equations. Obtaining the optimum design of the forging maximum load and die-filling rate by using response surface methodology. Through the results of FEM simulations to verify the prediction equations with considerable accuracy.
關鍵字(中) ★ 雙錐輥旋轉鍛造
★ 螺旋傘形齒輪
★ 有限元素分析
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
圖目錄 viii
表目錄 xii
符號說明 xiv
第一章 緒論 1
1-1前言 1
1-2 文獻回顧 3
1-2-1 圓柱及圓環旋轉鍛造鍛粗加工 3
1-2-2 齒輪單錐旋轉鍛造加工 6
1-2-3 雙錐輥旋轉鍛造加工 9
1-3 研究動機 14
第二章 基本理論 16
2-1雙錐輥旋轉鍛造成形原理及特點 16
2-2雙錐輥軸向鍛造基本概念 18
2-2-1雙錐輥軸向鍛造金屬流動規律 18
2-2-2主動區與被動區的變形 19
2-2-3接觸面投影面積計算 20
2-3傘形齒輪模具建立 23
第三章 有限元素法與實驗設計法 28
3-1有限元素模擬 28
3-2 Deform-3D有限元素軟體使用流程 29
3-3模擬驗證 31
3-4有限元素模擬設定 34
3-4-1旋轉鍛造加工參數及材料性質 34
3-4-2旋轉鍛造軸向成形力 36
3-4-3旋轉鍛造填充率 36
3-4-4有限元素網格建構與模擬收斂性探討 40
3-5雙錐輥旋轉鍛造有限元素分析結果例 44
3-5-1 變形分析 45
3-5-2 應力場 47
3-5-3 應變場 49
3-6反應曲面法 (Response Surface Methodology,RSM) 51
3-6-1回歸分析基本理論 51
3-6-2 模擬實驗因子與水準 54
3-6-3中心點實驗 55
3-6-4中心點路徑改善 57
3-6-5二階反應曲面法之實驗設計 57
第四章 結果與討論 59
4-1模擬結果 59
4-1-1中心點實驗結果 59
4-1-2中心點路徑改善結果 63
4-1-3 Box-Behnken實驗設計點之模擬結果 65
4-2迴歸模型建構 67
4-2-1鍛造填充率(fn)之迴歸分析 67
4-2-2鍛造最大成形力(Fn)之迴歸分析 71
4-2-3迴歸模型殘差分析 74
4-3模擬檢驗 77
4-3-1迴歸模型檢驗 77
4-3-2單因子設計點檢驗 79
4-3-3檢驗點殘差分析 81
4-4 螺旋傘齒輪最佳化分析與結果例 86
4-4-1 填充率最佳化 86
4-4-2 最大成形力最佳化 88
4-4-3最佳化分析與結果例 90
4-5不同模式之雙錐旋鍛 99
4-5-1閉模旋轉鍛造 100
4-5-2開模旋轉鍛造 101
4-5-3浮動模旋轉鍛造 103
4-5-4不同模式旋轉鍛造結果比較 105
第五章 結論與建議 108
5-1結論 108
5-2建議 109
參考文獻 110
參考文獻 [1] Z. Marciniak, “A rocking-die technique for cold-forming operations”, Machinery and Production Engineering, Vol. 117, pp. 792-797, 1970.
[2] R.A.C. Slater, and E. Appleton, “Some experiments with model materials to simulate the rotary forging of hot steels”, Machine Tool Design Research Conf., Binningham, U.K., pp. 1117-1136, 1970.
[3] P. M. Standring, and E. Appleton, “Rotary forging developments in Japan, Part 1, Machine development and forging research”, Journal of Mechanical Working Technology, Vol. 3, No. 3, pp. 253-273, 1980.
[4] M. Zhang, “Calculating force and energy during rotating forging”, In 3 rd International Conference on Rotary Metalworking Processes(ROMP 3), pp. 115-124, 1984.
[5] Z. Decheng, Y. Shijian, Z. R. Wang, and X. Zhenrui, “Defects caused in forming process of rotary forged parts and their preventive methods”, Journal of Materials Processing Technology, Vol. 32, No. 1, pp. 471-479, 1992.
[6] H. K. Oh, and S. Choi, “A study on center thinning in the rotary forging of a circular plate”, Journal of materials processing technology, Vol. 66, No. 1, pp. 101-106, 1997.
[7] X. Han, and L. Hua, “Comparison between cold rotary forging and conventional forging”, Journal of mechanical science and technology, Vol. 23, No. 10, pp. 2668-2678, 2009.
[8] X. Han, and L. Hua, “3D FE modeling simulation of cold rotary forging of a cylinder workpiece”, Materials & Design, Vol. 30, No. 6, pp. 2133-2142, 2009.
[9] X. Han, and L. Hua, “Effect of size of the cylindrical workpiece on the cold rotary-forging process”, Materials & Design, Vol. 30, No. 8, pp. 2802-2812, 2009.
[10]
X. Han, and L. Hua, “3D FE modeling of contact pressure response in cold rotary forging”, Tribology International, Vol. 57, pp. 115–123, 2012.
[11] X. Han, L. Hua, W. Zhuang, and X. Zhang, “Process design and control in cold rotary forging of non-rotary gear parts”, Journal of Materials Processing Technology, Vol. 241, pp. 2402-2416, 2014.
[12] X. B. Deng, L. Hua, and X. H. Han, “Three-dimensional FE modelling simulation of cold rotary forging of spiral bevel gear”, Ironmaking and Steelmaking, Vol. 38, No. 2, pp. 101-111, 2011.
[13] Z. S. Gao, J. B. Li, X. Z. Deng, J. J. Yang, F. X. Chen, A. J. Xu, and L. Li, “Research on gear tooth forming control in the closed die hot forging of spiral bevel gear”, The International Journal of Advanced Manufacturing Technology, Vol. 94, No. 5-8, pp. 2993-3004, 2018.
[14] H. Wang, S. Sun, J. Xia, and M. Zhang, “3D Finite Element Simulation of Rotary Forging in Spiral Bevel Driven Gear”, China Metalforming Equipment & Manufacturing Technology, Vol. 40, No. 3, pp. 93-96, 2005.

[15]
R. Hu, P. Y. Cheng, L. Hua, Z. G. Lu, and J. Lan, “Influence of Processing Parameter on Stress and Failure Form of Rotary Roll Cavity Die for Straight Tooth Bevel Gear”, Hot Working Technology, Vol. 36, No. 1, pp. 38-41, 2007.
[16] Y. Li, H. Wang, X. Wang, and C. Zhu, “Study on rotary forging process of spiral bevel gear”, Forging & Stamping Technology, Vol. 34, No. 6, pp. 24-27, 2009.
[17] W. Zhuang, L. Hua, X. Han, and L. Dong, “Distribution of Microstructure and Vickers Hardness in Spur Bevel Gear Formed by Cold Rotary Forging”, Advances in Mechanical Engineering, Vol. 6, pp. 1-13, 2014.
[18] 蕭至祥,「傘形齒輪旋轉鍛造製程有限元素分析」,國立中央大學,碩士論文,民國103年。
[19] 趙龍清,「以有限元素法與反應曲面法分析加工路徑對旋轉鍛造齒輪最佳化設計之影響」,國立中央大學,碩士論文,民國104年。
[20] 蘇耿民,「以有限元素法及反應曲面法分析旋轉鍛造傘形齒輪之加工問題」,國立中央大學,碩士論文,民國104年。
[21] M. Zhang, S. Zhang, and W. Xu, “Twin cone roll axial mill &axial rolling technology”, China Academic Journal Electronic Publishing House, pp. 59-60, 2004.

[22]
X. H. Han, L. Hua, and Y. M. Zhao, “3D FE Modeling Simulation of Cold Rotary Forging with Double Symmetry Rolls”, Materials Science Forum, Vols. 628-629, pp. 623-628, 2009.
[23] Y. M. Zhao and X. H. Han, “Rotary forging with double symmetry rolls”, Ironmaking and Steelmaking, Vol. 37, No. 8, pp. 624-632, 2010.
[24] S. Shi, “Finite Element Simulation of Twin Cone Roll Forging Spiral Bevel Gear”, Hot Working Technology, Vol. 39, No. 11, pp. 126-132, 2010.
[25] C. D. Zhu, Q. Guan and H. Wang, “Twin symmetry roll axial rolling: new method of plastic forming profiles demonstrated using manufacture of spiral bevel gears”, Ironmaking and Steelmaking, Vol. 38, No. 3, pp. 211-217, 2011.
[26] S. Shi, “Research on Technology of Twin Cone Roll Forging for Spiral Bevel Gear”, Hot Working Technology, Vol. 44, No. 21, pp. 141-144, 2015.
[27] C. D. Zhu, X. Jiang and T. L. Dai, “Research on technology of twin rollers rotary forging of spiral bevel gears”, Ironmaking and Steelmaking, Vol. 42, No. 8, pp. 632-640, 2015.
[28] G. Liu, Z. Zhang, J. Qian, and Y. Zou, “Study on numerical cavity design method of the twin cone roll forging driven spiral bevel gear”, Journal of Jiangxi University of Science and Technology, Vol. 37, No. 5, pp. 65-71, 2016.
[29] G. Liu, Z. Zhang, X. Wang and B. Chen, “Cavity Stress Analysis of Twin Cone Roll Forging Driven Spiral Bevel Gear”, Machinery Design and Manufacture, No. 6, pp. 221-224, 2017.
[30] G. Liu, J. Qian, Z. Zhang and Y. Zou, “Optimization on process parameters of double cone roller rolling for driven spiral bevel gear”, Forging and Stamping Technology, Vol. 42, No. 10, pp. 81-85, 2017.
[31] 葉怡成,實驗設計法:製程與產品最佳化,五南出版社,民國90年6月。
[32] V. Ranatunga, J. S. Gunasekera, W. G. Frazier, and K. D. Hur, “Use of UBET for design of flash gap in closed-die forging”, Journal of Materials Processing Technology, Vol. 111, pp. 107-112, 2001.
指導教授 葉維磬(Wei-Ching Yeh) 審核日期 2019-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明