博碩士論文 106323022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:44.192.94.177
姓名 陳宗佑(Chung-Yu Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響
★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析
★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響★ 顆粒外形對顆粒體在滑坡道流動行為之影響及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以離散元素法(Discrete Element Method, DEM)模擬苗栗縣南庄鄉鹿湖山區土石之崩塌行為,此次山崩事件排除地震與降雨兩大誘因,為乾顆粒的崩落。由中興工程顧問社提供的地形資料作為比對依據,經由驗證本研究離散元素模型的合理性後,並進一步研究顆粒體崩塌運動過程中的傳輸性質與內部物理性質,包括平移速度向量、擾動速度分佈、粒子溫度、配位數、粒子體積佔有率及von Mises應力。顆粒間摩擦係數較小時,碰撞機制主控能量損失,沉積情況相較於實際沉積形貌較為細長,顆粒間摩擦係數增加時,摩擦機制主控能量損失,沉積情況較為飽滿。因地勢崎嶇形成的自然阻礙物,使得顆粒體在崩塌的過程中碰撞機制仍佔一定的影響。經由參數分析,在μ_pp=0.0875與μ_pw=0.70的條件下,堆積區的形貌最為接近實際沉積形貌。三個方向的平移與旋轉擾動速度皆呈現馬克士威爾分佈,而崩塌後24sec的y方向與z方向平移擾動速度分佈峰值分別呈現左移與右移的現象,原因皆是此瞬間部分顆粒體已經開始沉積。粒子溫度分佈、配位數分佈、粒子體積佔有率及von Mises應力分佈皆隨著顆粒體崩塌的過程有所變化,從坡道上往下游崩塌,滑落到下游因地形阻礙而逐漸沉積,直至最後所有顆粒體堆積完成,配位數分佈、粒子體積佔有率與von Mises應力呈現正相關分佈。
摘要(英) This study analyzes landslide of Luhu mountain located in Nanzhuang Township, Miaoli County, and explores the landslide behavior and the sliding mechanism. This study proposes a discrete element model to simulate the landslide of Luhu mountain. The topographic data, provided by Sinotech engineering consultants, Ltd., are used as the basis for comparison. After the proposed DEM model is validated, we investigate internal physical properties, including translational velocity vector, fluctuation velocity distributions, granular temperatures, coordination number, solid fraction and von mises stress. As inter-particle friction coefficient decreases, the collision mechanism dominates the energy loss and the final deposition is much slender. In contrast, as inter-particle friction coefficient increases, the friction mechanism dominates the energy loss and the final deposition is wider. Due to the natural obstacles in the rugged terrain, collision mechanism plays an important role in the dissipation of system energy. According to parametric study, the final deposition is the closest to the actual sedimentary topography when μ_pp=0.0875 and μ_pw=0.70. The translational and rotational fluctuation velocity distributions in all three directions exhibit Maxwellian distributions. However, the peaks of the y-direction and z-direction translational fluctuation velocities at 24sec respectively show left-shifted and right-shifted phenomena, attributed to the fact that some of the particles have deposited by this moment. Internal physical properties change during landslide process, such as granular temperatures, coordination number, solid fraction and von mises stress. Coordination number, solid fraction and von mises stress show a positive correlation.
關鍵字(中) ★ 土石崩塌行為
★ 離散元素模擬
★ 摩擦係數
★ 內部物理性質
關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
目錄 iii
附表目錄 v
附圖目錄 vi
第一章 緒論 1
1-1前言 1
1-2 國內外學者運用離散元素法於土石流、山崩的研究及模擬 2
1-3 研究地事件概況 6
1-4 研究目的與動機 12
第二章 研究方法 13
2-1 離散元素法 13
2-1-1 離散元素法之架構 13
2-1-2 三維牛頓剛體運動方程式 13
2-1-3 離散元素法接觸力模型 15
2-1-4 鍵結模式及破壞準則 17
2-1-5 臨界時間步 19
2-2 離散元素法建模 20
2-3 內部物理性質 23
第三章 結果與討論 26
3-1 顆粒間摩擦係數對崩塌後沉積之影響 26
3-2 邊壁摩擦係數對崩塌後沉積之影響 31
3-3 顆粒體運動過程中之內部性質分析 37
3-3-1 平移速度向量場 39
3-3-2 擾動速度分佈圖 40
3-3-3 粒子溫度分佈、配位數分佈與粒子體積佔有率 44
3-3-4 von Mises應力分佈圖 55
第四章 結論 59
參考文獻 61
參考文獻 [1]P.A. Cundall, O.D. L.Strack, “A discrete numerical model for granular assemblies”, Géotechnique, 29, 47-65, 1979.
[2]Chung, Y.C., Liao, H.H., Hsiau, S.S. “Convection behaviour of non-spherical particles in a vibrating bed: discrete element modelling and experimental validation”. Powder Technology 237, 53-66, 2013.
[3]Naeini, S.E., Spelt, J.K. “Two-dimensional discrete element modeling of a spherical steel media in a vibrating bed”. Powder Technology 195, 83-90, 2009.
[4]Majid, M. , Walzel, P. “Convection and segregation in vertically vibrated granular beds”. Powder Technology 192, 311-317,2009.
[5]Chung, Y.C., Ooi, J.Y. “Benchmark tests for verifying discrete element modelling codes at particle impact level”. Granular Matter 13, 643-656,2011.
[6]Charles S. Campbell, Paul W. Cleary, Mark Hopkins, “Large-scale landslide simulations: Global deformation, velocities and basal friction”, Journal of geophysical research, 100, 8267-8283, 1995.
[7]T R Davies, M J McSaveney, K A Hodgson, “A fragmentation–spreading model for long-runout rock avalanches”, Can. J. Geotechnique, 36, 1096-1110, 1999
[8]O Hungr, Morgenstern N R, “Experiments on the flow behavior of granular materials at high velocity in an open channel”, Geotechnique, 34, 405-413, 1984
[9]O Hungr, Morgenstern N R, “High velocity ring shear tests on sand”, Geotechnique, 34, 415-421, 1984
[10]Kent P E, “The transport mechanism in catastrophic rock falls”, Journal of Geology, 74, 79-83, 1966
[11]Fahnestock R K, “Little Tahoma peak rockfalls and avalanches, Mount Rainier, Washington, U.S.A”, Rockslides and Avalanches, Elsevier, Amsterdam, The Netherlands, 181-196, 1978
[12]Susan H Cannon, William Z. Savage, “A Mass-Change Model for the Estimation of Debris-Flow Runout”, Journal of Geology, 96, 221-227, 1988
[13]Voight B, Janda R J, Glicken H, Douglass P M, “Nature and mechanics of the Mount St Helens rockslide-avalanche of May”, Geotechnique, 33, 243-273, 1983
[14]W Brain Dade, Herbert E. Huppert, “Long-runout rockfalls”, Geology, 26, 803-806, 1998
[15]Chia-Ming Lo, Ching-Fang Lee, Hsien-Ter Chou, Ming-Lang Lin, “Landslide at Su-Hua Highway 115.9k triggered by Typhoon Megi in Taiwan”, Landslides, 11, 293-304, 2014
[16]Cheng-Han Lin, Ming-Lang Lin, “Evolution of the large landslide induced by Typhoon Morakot: A case study in the Butangbunasi River, southern Taiwan using the discrete element method”, Engineering Geology, 197, 172-187, 2015
[17]Chao-Lung Tang, Jyr-Ching Hu, Ming-Lang Lin, Jacques Angelier, Chia-Yu Lu, Yu-Chang Chan, Hao-Tsu Chu, “The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation”, Engineering Geology, 106, 1-19, 2009
[18]Chia-Ming Lo, Zheng-Yi Feng, Kuang-Tsung Chang, “Landslide hazard zoning based on numerical simulation and hazard assessment”, Geomatics, Natural Hazards and Risk, 9, 368-388, 2018
[19]Olivier Lateltin, Christoph Haemmig, Hugo Raetzo, Christophe Bonnard, “Landslide risk management in Switzerland”, Landslides, 2, 313-320, 2005
[20]Chia-Ming Lo, Wei-Kai Huang, Ming-Lang Lin, “Earthquake-induced deep-seated landslide and landscape evolution process at Hungtsaiping, Nantou County, Taiwan”, Environ Earth Sci 75:645, 2016
[21]Chia-Ming Lo, Hung-Hui Li, Chien-Chung Ke, “Kinematic model of a translational slide in the Cidu section of the Formosan Freeway”, Landslides, 13, 141-151, 2016
[22]Chiao-Yin Lu, Chao-Lung Tang, Yu-Chang Chan, Jyr-Ching Hu, Chung-Chi Chi, “Forecasting landslide hazard by the 3D discrete element method: A case study of the unstable slope in the Lushan hot spring district, central Taiwan”, Engineering Geology, 183, 14-30, 2014
[23]Chao-Lung Tang, Jyr-Ching Hu, Chia-Ming Lo, Ming-Lang Lin, “The Catastrophic 1999 Tsaoling and 2009 Hsiaoling Landslides: Preliminary Study from 3-D Distinct Element Modeling”, Sino-Geotechnics, 122, 143-152, 2009.
[24]蒲淵明,「地滑/岩崩形成堰塞湖之運動模擬及參數探討」,國立交通大學,碩士論文,民國101。
[25]Gianvito Scaringi, Xuanmei Fan, Qiang Xu, Chun Liu, Chaojun Ouyang, Guillem Domènech, Fan Yang, Lanxin Dai, “Some considerations on the use of numerical methods to simulate past landslides and possible new failures: the case of the recent Xinmo landslide (Sichuan, China)”, Landslide, 15, 1359-1375, 2018
[26]T R Davies, M J Mcsaveney, K A Hodgson, “A fragmentation-spreading model for long-runout rock avalanches”, Can. J. Geotech, 36, 1096-1110, 1999.
[27]Yoichi Okura, Hikaru Kitahara, Toshiaki Sammori, Akiko Kawanami, “The effects of rockfall volume on runout distance”, Engineering Geology, 58, 109-124, 2000.
[28]Scheidegger, A. E., “On the prediction of the reach and velocity of catastrophic landslides”, Rock Mechanics, Vol. 5, pp.231-236, 1973.
指導教授 鍾雲吉(Yun-Chi Chung) 審核日期 2019-10-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明