博碩士論文 106323034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:18.119.143.253
姓名 溫明哲(Ming-Che Wen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 自然時效對A201-T7鋁合金應力腐蝕之影響
(Effect of natural aging on the SCC of A201-T7 alloys)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究藉由微結構觀察、導電度(%IACS)、熱差分析(DSC)與機械性質等的量測分析,來探討A201(Al-Cu-Mg-Ag)可熱處理型高強度鑄造鋁合金固溶淬火處理後,經不同時間 (未實施、1天、4天) 的自然時效,對後續過時效熱處理(T7:190℃*5hrs)合金的之抗應力腐蝕性(SCC)的影響。
結果顯示,當自然時效時間由1天增加至4天時,析出強化原子在鋁合金基地中的聚集(clustering)將增強,此時,合金之導電度較固溶態合金分別下降了約5.5%與6.2%,DSC分別增加了約36%與37%,而硬度則分別上升了40%與54%;當合金未進行、與進行1天與4天之自然時效後,施以過時效熱處理(T7)時,此時合金之導電度將較其自然時效態(未實施、1天、4天)分別提升了6.5%,12.7%與13.4%;而硬度則分別提升了112%,53%與30%。
且藉由慢應變速率拉伸試驗,來測試合金於海水中的抗應力腐蝕性(SCC)特性,顯現自然時效有明顯提升抗SCC效果,結果顯示A201-T7態合金延性損失率由未實施自然時效的28%,降至實施自然時效(1天與4天)的~5%,拉伸強度損失率則由未實施自然時效的15%,降至實施自然時效的~3%;這些都充分顯現固溶淬火後的自然時效,對於提升A201-T7態合金之抗應力腐蝕性(SCC)是必須的;以上的結果也顯示1天與4天之自然時效,不僅對提升T7態A201合金之抗應力腐蝕性(SCC)的效果相近,且對於微結構(導電度、DSC之分析)與機械性質之影響效果也是差異並不大。
摘要(英) This research presents the effect of different nature aging time (without aging, 1day, 4day) ,which the process is between solution treatment and T7 artificial aging ,on the resistance of stress corrosion cracking of high strength A201(Al-Cu-Ag-Mg) aluminum alloys , the analyzed methods including optical microscope (OM), electrical conductivity meter (% IACS), tensile test...ellipses.

It shows that the clustering of precipitation atoms in the aluminum alloy base will be enhanced when the natural aging time is increased from 1 day to 4 days. Compared to quenched-state alloys, the conductivity of alloys decreased about 5.5% and 6.2% respectively after 1day and 4days natural aging while the peak area of DSC increased about 36% and 37% and the hardness increased 40% and 54%. Compared to nature aging state(without aging, 1day, 4days), the conductivity of the alloy increased by 6.5%, 12.7% and 13.4% after T7 artificial aging while the hardness increased by 112%, 53% and 30% respectively. The resistance of the stress corrosion cracking (SCC) of the alloy were analyzes by slow strain rate tensile test in seawater. The results showed the resistance of SCC were improved significantly with the increasing time of nature aging.The ductility loss rate was 28% of the alloy without natural aging and the rate of natural aging alloys(1 day and 4 days) were both 5%. The tensile strength loss rate was 15% of the alloy without natural aging and the rate of natural aging alloys(1 day and 4 days) were both 3%.

The results showed natural aging is important to improve the resistance of SCC for the A201-T7. Microstructure (electrical conductivity meter, DSC), mechanical properties and the resistance of SCC ability shows no different with the natural aging 1 day and 4 days for the A201-T7.
關鍵字(中) ★ 鋁-銅
★ 慢應變速率拉伸試驗
★ 應力腐蝕
★ 無析出帶
關鍵字(英) ★ Al-Cu
★ SSRT
★ stress corrosion cracking
★ PFZ
論文目次 總目錄
摘要 I
Abstract III
總目錄 IV
圖目錄 VI
表目錄 VII
1 文獻回顧與目的 1
1.1鋁合金簡介 1
1.1.1 鋁合金的強化機制 1
(1)析出強化…………………………………………...…1
(2)固溶強化……………………………………………...3
(3)散佈強化……………………………………………...3
(4)細晶強化……………………………………………...3
(5)加工強化……………………………………………...3
1.1.2 A201鋁合金發展……………………………….……..4
1.2自然時效對Al-Cu鋁合金之影響……………………………..5
1.3 A201鋁合金應力腐蝕………………………………………….8
1.4腐蝕試驗-電化學測試法………………………………..…….11
1.5研究目的…………………………………………………….…13
2 實驗方法與步驟………………………………………..…………14
2.1合金熔配………………………………………………………14
2.2固溶處理 15
2.3熱處理…………………………………………………………15
2.4微結構觀察與分析 16
2.4.1光學顯微鏡…………………………………………….16
2.4.2導電度測試…………………………………………….16
2.4.3差示掃描熱量法……………………………………….17
2.4.4掃描式電子顯微鏡…………………………………….17
2.4.5穿透式電子顯微鏡…………………………………….17
2.4.6腐蝕試驗-電化學分析…………………………………18
2.5機械性質分析…………………………………………………20
2.5.1硬度試驗……………………………………………….20
2.5.2拉伸試驗……………………………………………….20
2.5.3慢應變速率拉伸試驗………………………………….21
3 結果與討論 23
3.1微結構分析 23
3.1.1金相觀察…………………………………………...…23
3.1.2差示掃描熱量法…………………………………...…25
3.1.3導電度測試………………………………………...…26
3.2 機械性質分析 28
3.2.1硬度與拉伸試驗……………………………………...28
3.2.2慢應變速率拉伸試驗測試合金之抗應力腐蝕性...…29
3.3 腐蝕試驗-電化學分析(腐蝕極化曲線)……………………..31.
3.4 穿透式電子顯微鏡(TEM)……………………………………32
3.5 掃描式電子顯微鏡(SEM)……………………………………34
4結論…………………………………………………………………...37
5未來研究概述……………………………….………………………..38
6參考文獻……………………………………………………………...39
參考文獻 [ASM1] J. R. Davis & Associates, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, P.3 (1994)

[ASM2] J. R. Davis & Associates, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, P.4(1994)

[ASM3] J. R. Davis & Associates, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, P.3-4 (1994)

[ASM4] J. R. Davis & Associates, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, P.24 (1994)

[ASM5] J. R. Davis & Associates, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM International Materials Park, P.580 (1994)

[ASTM1] ASTM B557M−15, Standard Test Methods for Tension Testing Wrought and
Cast Aluminum- and Magnesium-Alloy Products, P.6 (2019)

[BOA] A. Boag , R.J. Taylor , T.H. Muster , N. Goodman , D. McCulloch , C. Ryan , B. Rout , D. Jamieson ,A.E.Hughes , Stable pit formation on AA2024-T3 in a NaCl environment, Corrosion Science, Vol 52, PP.90–103 (2010)

[CHI] Chih-Horng Chang, Sheng-Long Lee, Jing-Chie Lin, Ming-Shan Yeh, Rong-Ruey Jeng, Effect of Ag content and heat treatment on the stress corrosion cracking of Al–4.6Cu–0.3Mg alloy , Materials Chemistry and Physics, Vol 91, PP.454–462 (2005)

[CHR] Christine BLANC, Juan CREUS, Marie TOUZET CORTINA, Stress Corrosion Cracking. Between the Corrosion Defect and the Long Crack: the Phase of the Initiation of the Cracks, “Mechanics –Microstructure-Corrosion” Coupling, P.288 (2006)

[DIE] W Dietzel, A Turnbull, SM Shanmuga Ramanan, S Arun, Stress Corrosion Cracking, P.9 (2017)

[GHO] K. S. GHOSH, Md. HILAL, Sagnik BOSE, Corrosion behavior of 2024 Al-Cu-Mg alloy of various tempers, Trans. Nonferrous Met. Soc. China, Vol 23, PP.3215-3227 (2013)

[GHO2] R. GHOSH, A. VENUGOPAL, P. RAMESH NARAYANAN, S. C. SHARMA, P. V. VENKITAKRISHNAN , Environmentally assisted cracking resistance of Al−Cu−Li alloy AA2195 using slow strain rate test in 3.5% NaCl solution, Trans. Nonferrous Met. Soc. China, Vol 27, PP.241−249 (2017)

[GOE] J. Goebel, T. Ghidini, A.J. Graham., Stress-Corrosion Cracking Characterisation of the Advanced Aerospace Al-Li 2099-T86 Alloy, Materials Science & Engineering A, Vol .673, PP.16−23 (2016)

[HAI] Haisheng Wang , Bo Jiang, Jiayi Zhang, Nanhai Wang, Danqing Yi, Bin Wang, Huiqun Liu, The precipitation behavior and mechanical properties of cast Al-4.5Cu-3.5Zn-0.5Mg alloy, Journal of Alloys and Compounds, Vol. 768, PP.707-713 (2018)

[HAO] Hao Qi, Xiao Yan Liu, Shun Xing Liang, Xi Liang Zhang, Hao Xuan Cui, Li Yun Zheng,Fei Gao, Qi Huai Chen, Mechanical properties and corrosion resistance of Al-Cu-Mg-Ag heat-resistant alloy modified by interrupted aging, Journal of Alloys and Compounds, Vol 657, PP.18-324 (2016)

[HYU] Hyunjung Lee , Youngjoo Kim , Yooin Jeong , Sangshik Kim, Effects of testing variables on stress corrosion cracking susceptibility of Al 2024-T351, Corrosion Science, Vol 55, PP.10-19 (2012)

[IVA] R.Ivanov,A. Deschamps, F. De Geuser, Clustering kinetics during natural ageing of Al-Cu based alloys with (Mg, Li) additions, Acta Materialia, Vol .157, PP.186-195 (2018)

[IVA2] Ivan Zuiko, Rustam Kaibyshev, Aging behavior of an Al-Cu-Mg alloy, Journal of Alloys and Compounds, Vol.759, PP.108-119 (2018)

[KAP] P. Kapranos, La Metallurgia Italiana, PP.7-8 (2012)

[KAT] Katsumi Koyama,High-Strength and Heat-Resistant Aluminum Alloys, Furukawa-Sky Review, No.6, PP.7-22 (2010)

[KLO] B. Klobes , O. Balarisi , M. Liu , T.E.M. Staab , K. Maier , The effect of microalloying additions of Au on the natural ageing of Al–Cu, Acta Materialia, Vol 58, PP.379-6384 (2010)

[KYO] Kyoungdoc Kim, Bi-Cheng Zhou, C.Wolverton, Interfacial stability of θ`/Al
in Al-Cu alloys, Scripta Materialia, Vol 159, PP.99-103 (2019)

[LI] J.F. Li, Z.Q. Zheng, S.C. Li, W.J. Chen, W.D. Ren, X.S. Zhao, Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys, Corrosion Science, Vol 49, PP.2436-2449 (2007)

[LIA] Liang Wu, Yanchi Chen, Xianfeng Li, Naiheng Ma, Haowei Wang, Rapid hardening during natural aging of Al-Cu-Li based alloys with Mg addition, Materials Science and Engineering A, Vol 744, PP.581-582 (2019)

[LIN] Y.C.Lin, Yu-QiangJiang, Yu-ChiXia, Xian-ChengZhang ,Hua-Min Zhou , JiaoDeng , Effects of creep-aging processing on the corrosion resistance and mechanical properties of an Al–Cu–Mg alloy, Materials Science&Engineering A, Vol 605, PP.192-202 (2014)

[NIK] Nikolaos D. Alexopoulosa, Christina Charalampidoua, Panagiotis Skarvelisb,Stavros K. Kourkoulis, Synergy of corrosion-induced micro-cracking and hydrogenembrittlement on the structural integrity of aluminium alloy(Al-Cu-Mg) 2024, Corrosion Science, Vol. 121, PP.32-42 (2017)

[PEN] Peng Xia, Zhiyi Liu, Enhanced fatigue crack propagation resistance in a superhigh strength Al–Zn–Mg–Cu alloy by modifying RRA treatment, Materials Materials Characterization, Vol.118, PP.438–445 (2016)

[PUM] Purnendu Kumar Mandal, Influence of micro-alloying with silver on microstructure and mechanical properties of Al-Cu alloy, Materials Science & Engineering A, Vol.722, PP.99-111 (2018)

[SAE] Saeed Khani Moghanaki, Mohsen Kazeminezhad, Roland Logé, Mechanical behavior and texture development of over-aged and solution treated Al-Cu-Mg alloy during multi-directional forging, Materials Characterization, Vol.135, PP.221-227 (2018)

[SHA] G. Sha , R.K.W. Marceau , X. Gao , B.C. Muddle , S.P. Ringer, Nanostructure of aluminium alloy 2024: Segregation, clustering and precipitation processes, Acta Materialia, Vol.59, PP.1659-1670 (2011)

[WEI] Weilong Zhang, G.S. Frankel, Transitions between pitting and intergranular corrosion in AA2024, Electrochimica Acta, Vol.48, PP.1193-1210 (2003)

[YUN] Yunjia Shi, Qinglin Pan, Influence of alloyed Sc and Zr, and heat treatment on microstructures and stress corrosion cracking of Al–Zn–Mg–Cu alloys, Materials Science & Engineering A, Vol.621, PP.173-181 (2015)
指導教授 李勝隆(Shen-Long Lee) 審核日期 2019-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明