博碩士論文 106323042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.145.74.54
姓名 李承諭(Cheng-Yu Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超音波輔助液中磨削鐵基金屬玻璃之研究
(A Study on Ultrasonic Assisted Grinding of Fe-based Metallic Glass under Cutting Fluid)
相關論文
★ 電泳沉積輔助拋光於SUJ2軸承鋼加工特性之研究★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究
★ 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究★ 脈衝複合偏壓電化學放電加工石英晶圓之研究
★ 超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究★ 超音波輔助電化學留心加工矩槽圓柱構造之研究
★ 快速塑性成型(QPF)製程的精準度探討★ 利用灰色關聯分析法探究線切割放電於SKD61加工之最佳化參數
★ 超音波輔助微電化學鑽孔鎳基合金加工研究★ 超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究
★ Inconel 718 鎳基超合金異形電極微孔放電加工之研究★ 實驗分析研究應用於減低數據中心伺服器硬碟之結構傳遞振動
★ 超音波輔助電化學加工微孔陣列之研究★ 超音波輔助磨削AGC玻璃加工之研究
★ Inconel718鎳基超合金添加石墨烯粉末 微孔放電加工之研究★ 高功率超音波振動輔助線切割放電加工SKD61材料之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究係以具超硬脆特性之鐵基金屬玻璃作為實驗用材質,並針對板狀試片進行超音波輔助液中磨削加工特性之研究。本研究所設定之實驗控制因子為超音波振幅、刀具進給速度、切削深度以及主軸轉速,探討各控制因子與表面粗糙度之關係,並在加工實驗後針對被加工後材料以XRD進行檢測,以探討試片加工後有無產生結晶現象。依據單因子實驗結果所顯示,參數組合超音波振幅段數6、刀具進給速度50mm/min、切削深度0.01 mm以及主軸轉速8000 rpm,可得到最佳表面粗糙度Ra 0.017 μm,應用超音波輔助磨削機制能改善鐵基金屬玻璃之表面品質,且試片經過超音波磨削加工後,仍為非晶狀態之金屬玻璃,實驗證實超音波磨削加工可應用於鐵基金屬玻璃加工。
摘要(英) This research is conducted by using Ultrasonic Assisted Grinding (UAG) under cutting fluid. Fe-based metallic glass plate is used as experimental workpiece. The experimental control parameters in this research are ultrasonic power (level), tool feed rate, cutting depth and spindle speed. The relationship between each control parameter and surface roughness were investigated. XRD was used to detect whether the workpiece was amorphous after the UAG processing.
According to the results, the best surface roughness Ra 0.017 μm can be obtained under control parameter combination with ultrasonic power level 6, feed speed 50 mm/min, cutting depth 0.01 mm and spindle speed 8000 rpm.
The results show that the ultrasonic assisted grinding under cutting fluid cooling mechanism can improve the surface quality of the Fe-based metallic glass plate. Fe-based metallic glass plates are still amorphous materials after the UAG processing. Based on the results of this experiment, it was concluded that UAG process can be applied to the Fe-based metallic glass plate machining.
關鍵字(中) ★ 超音波加工
★ 磨削
★ 金屬玻璃
關鍵字(英) ★ Ultrasonic Machining
★ Grinding
★ Metallic Glass
論文目次 摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
圖目錄 vii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 3
1-3 文獻回顧 5
1-4 研究方法 8
第二章 實驗基礎原理 9
2-1 超音波加工原理 [6] 9
2-2 磨削加工原理 [27] 10
2-3 超音波輔助磨削加工原理 [6, 27] 11
第三章 超音波輔助磨削鐵基金屬玻璃之研究 12
3-1 實驗簡介 12
3-2 實驗設備 13
3-2-1 CNC高速雕銑機 14
3-2-2 磨削刀具 15
3-2-3 超音波刀把 16
3-2-4 超音波發振器 17
3-2-5 超音波振幅量測設備 19
3-2-6 光學顯微鏡 20
3-2-7 表面粗糙度量測儀 21
3-2-8 槓桿量錶 22
3-2-9 掃描式電子顯微鏡(Scanning Electron Microscope, SEM)23
3-2-10 雷射共軛焦顯微鏡 24
3-2-11 X光繞射儀(X-ray diffraction, XRD) 25
3-2-12 試片製作設備 26
3-3 實驗材料 28
3-3-1 加工前XRD檢測 30
3-3-2 切削液 31
3-3-3 膠合材料 32
3-4 實驗流程與方法 33
第四章 結果與討論 38
4-1 超音波振幅段數與表面粗糙度之關係 38
4-2 進給速度與表面粗糙度之關係 43
4-3 磨削深度與表面粗糙度之關係 48
4-4 主軸轉速與表面粗糙度之關係 53
4-5 XRD檢測 59
第五章 結論 60
第六章 未來研究方向 61
參考文獻 62
參考文獻 [1] B. Lawn, R. Wilshaw, ”Indentation fracture: principles and applications”, Journal of materials science, pp. 1049–1081, 1975.
[2] B. R. Lawn, D. B. Marshall, ”Hardness, toughness, and brittleness: an indentation analysis”, Journal of the American ceramic society, pp. 347-350, 1979.
[3] T. G. Bifano, S. C. Fawcett, ”Specific grinding energy as an in-process control variable for ductile-regime grinding”, Precision engineering, pp. 256-262, 1991.
[4] S. Malkin, T. W. Hwang, ”Grinding mechanisms for ceramics” , CIRP annals , pp. 569-580, 1996.
[5] N. K. Kim, C. Guo, S. Malkon, ”Heat flux distribution and energy partition in creep-feed grinding” , CIRP Annals, pp. 227-232, 1997.
[6] 黃俊曄,放電與超音波複合加工法在鈦合金加工上之應用,國立中央大學機械工程研究所,碩士論文,2000。
[7] T. Kuriyagawa, K. Syoji, H. Ohshita, ”Grinding temperature within contact arc between wheel and workpiece in high-efficiency grinding of ultrahard cutting tool materials, ” Journal of Materials Processing Technology , pp. 39-47, 2003.
[8] K. Ramesh, H. Huang, L. Yin, J. Zhao, ”Microgrinding of deep micro grooves with high table reversal speed”, International Journal of Machine Tools and Manufacture, pp. 39-49, 2004.
[9] 沈定杰,超音波輔助磨削加工特性研究,逢甲大學材料與製造工程所,碩士論文,2006。
[10] D. Dornfeld, S. Min, Y. Takeuchi, ”Recent advances in mechanical micromachining”, CIRP annals, pp. 745-768, 2006.
[11] 朱恭德,灰關聯分析運用於超音波加工多重品質特性之最佳化製程,逢甲大學機械工程學所,碩士論文,2007。
[12] T. Tawakoli, B. Azarhoushang, ”Influence of ultrasonic vibrations on dry grinding of soft steel”, International Journal of Machine Tools and Manufacture, pp. 1585-1591, 2008.
[13] J. Akbari, H. Borzoie, M. H. Mamduhi, ”Study on ultrasonic vibration effects on grinding process of alumina ceramic (Al2O3)”, World Academy of Science, Engineering and Technology, pp. 785-789, 2008.
[14] K. Hara, H. Isobe, A. Kyusojin, ”Effects of cutting edge truncation on ultrasonically assisted grinding”, Key Engineering Materials, pp. 368-374, 2009.
[15] 劉恩廷,運用超音波於硬脆材料之精密加工之發展與評估,國立臺灣科技大學機械工程系,碩士論文,2009。
[16] J. Feng, B. S. Kim, A. Shih, J. Ni, “Tool wear monitoring for micro-end grinding of ceramic materials”, Journal of Materials Processing Technology, pp. 5110-5116, 2009.
[17] T. Tawakoli, B. Azarhoushang, M. Rabiey, ”Ultrasonic assisted dry grinding of 42CrMo4”, The International Journal of Advanced Manufacturing Technology, pp. 883-891, 2009.
[18] E. Brinksmeier, Y. Mutlugünes, F. Klocke, J. C. Aurich, P. Shore, H. Ohmori, ”Ultra-precision grinding”, CIRP annals, pp. 652-671, 2010.
[19] M. Arif, M. Rahman, W. Y. San, ”Analytical model to determine the critical feed per edge for ductile–brittle transition in milling process of brittle materials”, International Journal of Machine Tools and Manufacture, pp. 170-181, 2011.
[20] K. M. Li, Y. M. Hu, Z. Y. Yang, M. Y. Chen, ”Experimental study on vibration-assisted grinding”, Journal of Manufacturing Science and Engineering, pp.041009-1-041009-8, 2012.
[21] X. H. Shen, J. Zhang, D. X. Xing, Y. Zhao, ”A study of surface roughness variation in ultrasonic vibration-assisted milling”, The International Journal of Advanced Manufacturing Technology, pp. 553-561, 2012.
[22] X. H. Shen, J. H. Zhang, H. Li, J. J. Wang, X. C. Wang, ”Ultrasonic vibration-assisted milling of aluminum alloy”, The International Journal of Advanced Manufacturing Technology, pp. 41-49, 2012.
[23] A. Perveen, M. Jahan, M. Rahman, Y. S. Wong, ”A study on microgrinding of brittle and difficult-to-cut glasses using on-machine fabricated poly crystalline diamond (PCD) tool”, Journal of Materials Processing Technology, pp. 580-593, 2012.
[24] 鄭富堯,超音波振動輔助加工玻璃材料之參數分析,國立聯合大學機械工程學系,碩士論文,2013。
[25] Y. Wang, B. Lin, S. Wang, X. Cao, ”Study on the system matching of ultrasonic vibration assisted grinding for hard and brittle materials processing”, International Journal of Machine Tools and Manufacture, pp. 66-73, 2014.
[26] Z. Jianhua, Z. Yan, Z. Shuo, T. Fuqiang, G. Lanshen, D. Ruizhen, ”Study on effect of ultrasonic vibration on grinding force and surface quality in ultrasonic assisted micro end grinding of silica glass”, Shock and Vibration, ID 418059 (10 pages), 2014.
[27] 王政捷,直結式迴轉超音波加工優化參數與刀具磨耗特性之研究,國立高雄應用科技大學模具工程系,碩士論文,2015。
[28] 賴冠維,超音波輔助加工強化玻璃之毛邊品質分析,國立聯合大學機械工程學系,碩士論文,2016。
[29] Z. Li, K. Zheng, W. Liao, X. Xiao, ”Tribological properties of surface topography in ultrasonic vibration-assisted grinding of zirconia ceramics”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, pp. 4203-4215, 2018.
[30] B. M. Abdo, S. Anwar, A. El-Tamimi, ”Machinability study of biolox forte ceramic by milling microchannels using rotary ultrasonic machining”, Journal of Manufacturing Processes, pp. 175-191, 2019.
指導教授 崔海平(Hai-Ping Tsui) 審核日期 2020-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明