博碩士論文 106323052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.217.4.250
姓名 吳東育(Tung-Yu Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 計算流體力學模擬流率與濕潤性對徑向多孔介質指形流之影響
(Computational Fluid Dynamic Simulation of Influence of Suction and Wettability on Viscous Fingering in Radial Porous Media)
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 兩黏度不同的不互溶流體在多孔介質中,若以低黏度流體驅替較高黏度流體,由於兩流體之間的黏度差異、表面張力與濕潤性等影響下,導致流動介面不穩定,這種現象稱之為指形流。根據前人研究,在Hele-Shaw cell中以低毛細數下進行時變流率吸出能具有抑制的效果,本文確認這一方法是否同樣有助於提升具亂數分布顆粒的徑向多孔介質之驅替效果。研究結果顯示Hele-Shaw cell中,低毛細數下,時變流率能有效抑制指形的產生,其中排移流動的驅替效果優於浸潤流動。多孔介質中受到孔隙間毛細壓力之影響,排移流動傾向流往孔隙較大處,浸潤流動傾向流往孔隙較小處,且只有浸潤流動在低流率下才有些許的抑制效果,但兩者皆受到孔隙之影響使線性流率無明顯抑制效果。
摘要(英) When low-viscosity fluids displace higher-viscosity fluids, it causes the flow instability of the two-phase interface. This phenomenon is called viscous finger. According to previous studies, time-dependent suction flow rate can inhibit the viscous finger at a low capillary number in the Hele-Shaw cell. This study was to confirm whether this method is equally applicable to porous media. We perform the simulation of radial Hele-Shaw cell to analyze the influence of wettability.
The results regarding the Hele-Shaw cell show the linear suction flow rate can indeed suppress finger at low capillary number, and drainage flow performs better than imbibition flow at maintaining the stability of the interface. Regarding porous media flow, little it can suppress finger that we use the linear suction flow rate. Under the influence of capillary pressure for differences pore sizes, drainage flow tends to flow to the larger pores and the imbibition flow tends to flow to the smaller pores. Because the wetting fluid can surround the particles by wetting the particles, imbibition flow has a larger fingering width, and display better displacement rates than drainage flow.
關鍵字(中) ★ 指形流
★ 多孔介質
★ 毛細數
★ 濕潤性
★ 時變流率
★ Hele-Shaw cell
關鍵字(英) ★ finger flow
★ Hele-Shaw cell
★ porous media
★ capillary number
★ wettability
★ time-dependent flow rate
論文目次 目錄
中文摘要 i
Abstract ii
符號說明 iii
英文字母 iii
希臘字母 iv
上下標 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究目的 5
第二章 數學模型 11
2.1 問題描述 11
2.1.1 Hele-Shaw cell模型 11
2.1.2 多孔介質模型 11
2.1.3 常數流率與線性流率 12
2.2 統御方程式 13
2.2.1 質量守恆方程式 13
2.2.2 動量守恆方程式 13
2.2.3 體積分率方程式 14
2.3 VOF(Volume of Fluid)模型 14
2.4 CSF(the Continuum Surface Force)模型 15
2.5 流體性質與基本假設 16
2.6 邊界條件 17
2.7 數值方法 18
2.7.1. 模擬設備 18
2.7.2. 收斂準則 18
2.7.3. 網格測試 19
第三章 Hele-Shaw cell 25
3.1 模擬條件 25
3.2 濕潤性 26
3.2.1. 排移流動之模擬結果 27
3.2.2. 浸潤流動之模擬結果 28
3.3 改變表面張力之模擬結果 29
3.4 綜合比較 29
3.4.1. 平均殘留半徑與偏差 29
3.4.2. 壓力 31
3.4.3. 功率 33
第四章 多孔介質 53
4.1 毛細數 53
4.1.1排移流動 53
4.1.2浸潤流動 54
4.1.3綜合比較 56
4.2 改變表面張力之模擬結果 56
4.2.1排移流動 57
4.2.2浸潤流動 58
4.2.3綜合比較 58
4.3 完全沾濕介質 59
4.4 吸出與注入之異同 60
第五章 結論與未來展望 77
5.1 結論 77
5.2 未來展望 79
參考文獻 80
參考文獻 參考文獻
Al-Housseiny, T. T., Tsai, P. A., & Stone, H. A. (2012). Control of interfacial instabilities using flow geometry. Nature Physics, 8(10), p. 747.
ANSYS. (2015). ANSYS Fluent Theory Guide. ANSYS, Inc.
ANSYS. (2015). ANSYS Fluent Users Guide. ANSYS, Inc.
BatailleJ. (1968). Stabilité d’un écoulement radial non miscible. n Revue de l’Institut Français du Pétrole et Annales des Combustibles Liquides, 23, p. 1349.
Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of computational physics, 100(2), pp. 335-354.
Brener, E. A., Kessler, D. A., Levine, H., & Rappei, W. J. (1990). Selection of the viscous finger in the 90° geometry. Europhysics Letters, Vol. 13, pp. 161-166.
Callan-Jones, A. C., Joanny, J. F., & Prost, J. (2008). Viscous-fingering-like instability of cell fragments. Physical review letters, 100(25), p. 258106.
Carrillo, L., Magdaleno, F. X., Casademunt, J., & Ortı´n, J. (1996). Experiments in a rotating Hele-Shaw cell. Physical Review E, Vol. 54, pp. 6260-6267.
Celia, M. A., Bachu, S., Nordbotten, J. M., & Bandilla, K. W. (2015). Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water Resources Research, 51(9), pp. 6846-6892.
ChenJ.-D. (1987). Radial viscous fingering patterns in Hele-Shaw cells. Schlumberger-Doll Research, Old Quarry Road, Ridgefield, CT 06877-4108, USA.
Chuoke, R. L., Van Meurs, P., & van der Poel, C. (1959). The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media. Society of Petroleum Engineers, Vol. 216, pp. 188-194.
Dawson, H. E., & Roberts, P. V. (1997). Influence of viscous, gravitational, and capillary forces on DNAPL saturation. Groundwater, 35.2,, pp. 261-269.
Dias, E. O., Alvarez-Lacalle, E., Carvalho, M. S., & Miranda, J. A. (2012). Minimization of Viscous Fluid Fingering: A Variational Scheme for Optimal Flow Rates. Physical Review Letters, p. 144502.
Dias, E. O., Parisio, F., & Miranda, J. A. (2010). Suppression of viscous fluid fingering: A piecewise-constant injection process. Physical Review E 82, p. 067301.
Ferrari, A., & Lunati, I. (2013). Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy. Advances in water resources, 57, pp. 19-31.
Fountain, J. C. (1991). The use of surfactants for in situ extraction of organic pollutants from a contaminated aquifer. Journal of Hazardous Materials, 3, pp. 295-311.
Gorell, S., & Homsy, G. (1983). A theory of the optimal policy of oil recovery by secondary displacement process. Society for Industrial and Applied Mathematics, pp. 79-98.
Gu, Y. (2001). Drop size dependence of contact angles of oil drops on a. Colloids and Surfaces A: Physicochemical and Engineering Aspects, pp. 597-224.
Hill, S. (1952). Channeling in packed columns. Chemical Engineering Science, 1(6), pp. 247-253.
Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), pp. 201-225.
Homsy, G. M. (1987). Viscous fingering in porous media. Ann. Rev. Fluid Mech., pp. 271-311.
Horgue, P., Augier, F., Duru, P., Prat, M., & Quintard, M. (2013). Experimental and numerical study of two-phase flows in arrays of cylinders. Chemical Engineering Science, 102, pp. 335-345.
Hugaboom, D., & Powers, S. (2002). Recovery of coal tar and creosote from porous media: the influence of wettability. Ground Water Monitoring and Remediation, Vol. 22, pp. 83-90.
Jha, B., Cueto-Felgueroso, L., & Juanes, R. (2011). Fluid Mixing from Viscous Fingering. American Physical Society, p. 194502.
LangerS.J. (1980). Instabilities and pattern formation in crystal growth. Reviews of Modern Physics, 52(1), p. 1.
Leclerc, D. F., & Neale, G. H. (1988). Monte Carlo simulations of radial displacement of oil from a wetted porous medium: fractals, viscous fingering and invasion percolation. J. Phys. A: Math. Gen. 21, pp. 2979-2994.
LewisJ.D. ( 1950). The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II. Proc. R. Soc. Lond. A,, 202(1068), pp. 81-96.
Lin, K. Y. (2009). The influence of processing parameters on fingering formation in fluid‐assisted injection‐molded disks. Polymer Engineering & Science, 49(11), pp. 2257-2263.
Lins, T. F. (2017). Dynamics of Time Dependent Immiscible Injection Flows in Porous Media. Thesis of degree of master of University of Calgary.
Martyushev, L., & Birzina, A. (2008). Specific features of the loss of stabilityduring radial displacement of fluid in theHele–Shaw cell. Journal of Physic, p. 045201.
Mohammad Mirzadeh and Martin Z. Bazant. (2017). Electrokinetic Control of Viscous Fingering. Physical review letters, pp.119.
Mukherjee, P. P., Kang, Q., & Wang, C. Y. (2011). Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells—progress and perspective. Energy & Environmental Science, 4(2), pp. 346-369.
Paterson, L. (1981). Radial fingering in a Hele Shaw cell. Journal of Fluid Mechanics, 113, pp. 513-529.
Pennell, K. D., Jin, M., Abriola, L. M., & Pope, G. A. (1994). Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene. Journal of Contaminant Hydrology, 16(1), pp. 35-53.
Philip, J. R. (1970). Flow in porous media. Annual Review of Fluid Mechanics, 2(1), pp. 177-204.
Pihler-Puzović, D., Illien, P., Heil, M., & Juel, A. (2012). Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes. Physical review letters, 108(7), p. 074502.
Rauseo, S. N., Barnes Jr, P. D., & Maher, J. V. (無日期). Development of radial fingering patterns. Physical Review A, 35(3), 1245.
Reis, L., & J, A. M. (2011). Controlling fingering instabilities in nonflat Hele-Shaw geometries. Physical Review E, p. 066313.
Sader, J. E., Chan, D. Y., & Hughes, B. D. (1994). Non-Newtonian effects on immiscible viscous fingering in a radial Hele-Shaw cell. Physical Review E, Vol.49, pp. 420-432.
Saffman, P. G., & Taylor, G. (1958, June). The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences(Vol. 245,No. 1242), pp. 312-329.
Simjoo, M., Rezaei, T., Andrianov, A., Zitha, P. L., & Zitha, P. (2013). Foam stability in the presence of oil: effect of surfactant concentration and oil type. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 438, pp. 148-158. (2013). Foam stability in the presence of oil: effect of surfactant concentration and oil type. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 438, pp. 148-158.
Than, P., Preziosi, L., Josephl, D. D., & Arney, M. (1988). Measurement of interfacial tension between immiscible liquids with the spinning road tensiometer. Journal of Colloid and Interface Science, Vol. 124, pp. 552-559.
Trojer, M., Szulczewski, M. L., & Juanes, R. (2015). Stabilizating fluid-fluid displacements in porous media through wettability alteration. Physic Review Application, vol. 3 , p. 054008.
Wang, Y., Zhang, C., Wei, N., Oostrom, M., Wietsma, T. W., & Li, X. (2012). Experimental study of crossover from capillary to viscous fingering for supercritical CO2−water displacement in a homogeneous pore network. Environmental Science and Technology, pp. 212-218.
Young, T. (1805). An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, pp. 65-87.
Zhao, B., MacMinn, C. W., & Juanes, R. (2016). Wettability control on multiphase flow in patterned microfluidics. PNAS, vol. 113, pp. 10251-10256.
林再興. (2004). 石油採收技術與蘊藏量估算. 科學發展月刊,382, 頁 18-23.
林怡萱. (2019). 以計算流體力學模擬徑向多孔介質指形流: 流率與濕潤性的交互作用. 國立中央大學碩士論文.
林鴻諭. (2016). 利用異質孔徑界面增強多孔介質內流體驅替效果之研究. 國立中央大學碩士論文.
邱瑞祥. (2017). 時變流率對多孔介質指形的影響. 國立中央大學碩士論文.
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2019-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明