博碩士論文 106323070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.230.154.129
姓名 張倢綜(Jie-Zong Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 CAD模型基礎擠出物之實體網格自動化建構技術發展
相關論文
★ 光纖通訊主動元件之光收發模組由上而下CAD模型設計流程探討★ 汽車鈑金焊接之夾治具精度分析與改善
★ 輪胎模具反型加工路徑規劃之整合研究★ 自動化活塞扣環壓入設備之開發
★ 光學鏡片模具設計製造與射出成形最佳化研究★ 塑膠射出薄殼件之CAD模型凸起面特徵辨識與分模應用技術發展
★ 塑膠射出成型之薄殼件中肋與管設計可製造化分析與設計變更技術研究★ 以二維影像重建三維彩色模型之色彩紋理貼圖技術與三維模型重建系統發展
★ 結合田口法與反應曲面法之光學鏡片射出成型製程參數最佳化分析★ 螺槳葉片逆向工程CAD模型重建與檢測
★ 電腦輔助紋理影像辨識與點資料視覺化研究★ 渦輪轉子CAD模型重建、多軸加工路徑模擬與誤差分析
★ 電腦輔助皮革紋理雕刻之研究★ 三次元量測軟體發展
★ 航太葉片三次元檢測技術發展★ 鞋楦逆向CAD模型重建技術探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在有限元素分析的技術中,必須將CAD模型轉換成實體網格,以便求解器的分析,而網格的數量、結構與品質,直接影響著模擬分析的效率與準確度。隨著模流分析所需的精度增加,傳統的四面體網格勢必被柱狀網格取代,例如,六面體網格與三角柱網格,但是此種類型的網格建構卻是非常耗時的。本研究是針對常見的薄殼元件擠出物,肋、管、柱,探討如何利用結構式實體網格搭建,並利用Moldex3D Mesh基本網格建構模組,建立以六面體網格和三角柱網格結構為主的自動化實體網格程序。而本研究會先掌握拓撲與幾何資訊後,建立實體網格化所需要的資料與關聯,並產生高品質且結構規則的實體網格,也將協助於未來,結合薄殼元件特徵辨識,用於發展更完整的自動化實體網格建構之演算法。
摘要(英) In finite element analysis, the computer aided design (CAD) model must be converted into solid meshes for the analysis of the solver. As for the number, structure and quality of the mesh, they directly affect the efficiency and the accuracy of the simulation. Traditional tetrahedral mesh is bound to be replaced by hexahedral mesh or prism mesh, because of the increasing of precision required for mold flow analysis. However, building up these types of meshes is very time consuming. This study is aimed at automatic mesh generation for common extrusions of thin-shell parts such as ribs, tubes, and columns. It discusses how to build a structured grid, and uses the Moldex3D Mesh module to create the process of automatic mesh based on hexahedral meshes or prism meshes. This proposed method will first record the topology and the geometric information, then establish the data and the connection of the solid meshes building, and finally produce a high-quality structured grid. The results of this study can be used to develop a more complete algorithm of automatic constructing structured grids of protrusion features by combining with a protrusion recognition algorithm for thin-shell parts.
關鍵字(中) ★ 結構式實體網格
★ 實體網格自動化
★ 擠出物
★ 特徵辨識
關鍵字(英) ★ structured grid
★ automatic solid mesh
★ extrusion
★ feature recognition
論文目次 目錄 III
圖目錄 V
表目錄 VI
第一章 緒論 1
1.1前言 1
1.2 文獻回顧 4
1.2.1 CAD模型的關聯性資訊 4
1.2.2 實體網格的建構 5
1.3 研究目的與方法 7
1.3.2 研究方法 8
1.4 論文架構 11
第二章 網格建構方法 13
2.1 前言 13
2.2 實體網格建構模組 13
2.2.1 實體網格建構模組的功能 13
2.2.2 實體網格建構模組的限制 16
2.3 實體網格的種類與建構 17
2.3.1 實體網格的種類 17
2.3.2 結構式網格的建構 19
2.4 手動結構式網格的建構 24
第三章 CAD模型基礎擠出物之實體網格自動化建構 32
3.1 前言 32
3.2 CAD模型關聯性資料的建構 32
3.2.1 邊與面關聯性資料的擴充 34
3.2.2 Virtual Data的建構 36
3.3網格資料的建構 39
3.3.1 CAD模型關聯性資料與網格資料的關聯 39
3.3.2網格資料的建構方法 46
第四章 案例測試與討論 57
4.1 前言 57
4.2 CAD模型基礎擠出物之實體網格自動化建構操作 57
4.3 案例結果的呈現 62
第五章 結論與未來展望 73
5.1 結論 73
5.2 未來展望 74
參考文獻 76
參考文獻 [1] L. D. Floriani, S. Ansaldi and B. Falcidieno, “Geometric Modeling of Solid Objects by Using a Face Adjacency Graph Representation,” ACM SIGGRAPH Computer Graphics, Vol. 19, No. 3, pp. 131-139, 1985.
[2] S. Joshi and T. C. Chang, “Graph-based Heuristics for Recognition of Machined Features from a 3D Solid Model,” Computer-Aided Design, Vol. 20, No.2, pp. 58-66, 1988.
[3] F. Tian, X. Tian, J. Geng, Z. Li and Z. Zhang, “A Hybrid Interactive Feature Recognition Method Based on Lightweight Model,” International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Vol. 1, pp. 113-117, 2010.
[4] J.Y. Lai, M. H. Wang, Z. W. You, Y. K. Chiu, C. H. Hsu, Y. C. Tsai and C. Y. Huang, “Recognition of Virtual Loops on 3D CAD Models Based on the B-rep Model,” Engineering with Computers, Vol. 32, No. 4, pp. 593-606, 2016.
[5] T. Blacker, “Automated Conformal Hexahedral Meshing Constraints, Challenges and Opportunities,” Engineering with Computers, Vol. 17, Issue 3, pp. 201-210, 2001.
[6] K. Shimada, “Current Trends and Issues in Automatic Mesh Generation,” Computer-Aided Design and Applications, Vol. 3, pp. 741-750, 2006.
[7] M. Morgut and E. Nobile, “Comparison of Hexa-Structured and Hybrid-Unstructured Meshing Approaches for Numerical Prediction of the Flow Around Marine Propellers,” The First International Symposium on Marine Propulsors, Trondheim, Norway, 2009.
[8] A. Schonning, B. Oommen, I. Ionescu and T. Conway, “Hexahedral Mesh Development of Free-Formed Geometry: the Human Femur Exemplified,” Computer-Aided Design, Vol. 41, pp. 566–572, 2009.
[9] K. H. Shivanna, S. C. Tadepalli and N. M. Grosland, “Feature-Based Multiblock Finite Element Mesh Generation,” Computer-Aided Design, Vol. 42, No. 12, pp. 1108-1116, 2010.
[10] J. Gregson, A. Sheffer and E. Zhang, “All-Hex Mesh Generation via Volumetric Polycube Deformation,” Computer Graphics Forum, Vol. 30, No. 5, pp. 1407-1416, 2011.
[11] Y. Li, Y. Liu, W. Xu, W. Wang and B. Guo, “All-Hex Meshing using Singularity-Restricted Field,” ACM Transactions on Graphics (TOG), Vol. 31, No. 177, pp. 1-177, 2012.
[12] Y. Zhang, X. Luo and Y. Zhao, “An Approach to the Automatic Recognition of Boolean Decomposition Loops for Swept Volume Decomposition,’’ 25th International Meshing Roundtable, Washington DC, U.S.A., September 26-30, 2016.
[13] L. Sun, C. M. Tierney, C. G. Armstrong and T. T. Robinson, “Decomposing Complex Thin-Walled CAD Models for Hexahedral-Dominant Meshing,” Computer-Aided Design, Vol. 103, pp. 118-131, 2017.
[14] 王明暄,應用於模流分析之CAD模型特徵辨識與實體網格品質提升之研究,國立中央大學博士論文,2017。
[15] B-rep Data Structure, http://wiki.mcneel.com/developer/brepstructure
[16] openNURBS, http://www.rhino3d.com/tw/opennurbs
[17] 科盛科技, http://www.moldex3d.com/en/
[18] Rhinoceros, http://www.rhino3d.com
[19] Moldex3D Mesh Icon Functions, http://support.moldex3d.com/r15/en/modelpreparation_moldex3dmesh_iconfunctions.html
指導教授 賴景義(Jiing-Yih Lai) 審核日期 2019-6-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明