博碩士論文 106323079 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.138.200.66
姓名 陳慶臨(Ching-Lin Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 ITO奈米週期結構提升鈣鈦礦發光二極體光萃取率之模擬研究
(The Simulation Study of Enhancing Light Extraction Efficiency of Perovskite Light Emitting Diodes Via Nano-Periodic Structure of ITO Substrate)
相關論文
★ 奈微米球粗化基板技術 暨提升OLED元件出光效率研究★ 銀-聚苯乙烯殼核球於高分子分散液晶薄膜元件之應用
★ ITO 奈微米週期結構電極提升OLED 元件發光效率之研究★ 以CaTiO3應用於鈣鈦礦太陽能電池電子傳輸層之研究
★ 奈微米結構於鈣鈦礦太陽能電池光捕捉應用之研究★ 超薄類鑽碳膜之研究
★ 利用鈣/鈦複合物作為 鈣鈦礦太陽能電池介孔層之研究★ 在低溫製程下製作鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究
★ 氟摻雜氧化錫奈米週期結構電極應用於鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究★ 具奈米結構之氟摻雜氧化錫玻璃基板應用於鈣鈦礦太陽能電池之研究
★ 快速熱退火之石墨烯特性分析★ 利用光發射光譜儀監控高功率脈衝磁控濺鍍光學薄膜之研究
★ 利用馬倫哥尼效應製備高品質高效率鈣鈦礦太陽能電池★ 利用溶劑萃取法結合綠色溶劑製備鈣鈦礦太陽能電池
★ 奈米圖案化基板於白光有機發光二極體暨有機鈣鈦礦太陽能電池效率增益之研究★ 單源熱蒸鍍無機鈣鈦礦薄膜暨特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本研究探討在ITO玻璃基板上利用曝光蝕刻製程製作出奈米週期結構以增加鈣鈦礦LED(以CsPbBr3為發光層)光萃取率,本文利用光學模擬的方式模擬不同CsPbBr3厚度平面LED和不同CsPbBr3厚度之不同蝕刻深度之週期結構以得到最高光萃取率並了解光萃取率增加的程度,如此即可減少製作元件之成本與時間。
模擬不同CsPbBr3厚度之平面LED可發現:光萃取率會隨著厚度的改變而有波動性的變化,在厚度50nm時光萃取率為13.90%;厚度100nm時為21.94%;厚度150nm時為13.88%而厚度200nm時為23.05%,原因是發光層光學厚度改變所產生之建設性與破壞性干涉。
模擬不同CsPbBr3厚度與不同蝕刻深度週期結構可發現:在厚度50nm時光萃取率會隨著蝕刻深度(30/50/80/100nm)增加而增加,蝕刻深度30nm為18.65%;深度50nm為22.65%;深度80nm為27.86%,而深度100nm為31.34%,這是因為光柵相位差異所產生之克希荷夫繞射增益,但是當蝕刻深度超過100nm,出光率會因為等效介質光柵反射率上升而有些微下降;厚度100nm時蝕刻深度30nm光萃取率為32.88%;在深度50nm時達到最高光萃取率37.69%而在深度80nm時下降至33.18%,這是因為點光源與光柵的距離因素產生之繞射增益減少;厚度200nm時蝕刻深度30nm光萃取率即達到最大值32.25%,之後隨蝕刻深度增加(50/80nm),光萃取率下降至31.62%與27.61%,此為斜邊產生破壞性干涉所造成之結果;改變點光源X位置可發現在斜邊處發出的光能比起在平邊發出的量來得少,可印證斜邊產生之破壞性干涉。
摘要(英) Abstract
It is a piece of research about the study of enhancing light extraction efficiency of perovskite LED (use CsPbBr3 as active layer) by exposing and etching ITO substrate for Nano-patterned periodic structure. In this article we use optical simulation to simulate plane LED in different CsPbBr3 thickness and periodic patterned LED in different CsPbBr3 thickness and etching depth for best light extraction efficiency, and this method can let us understand the amount of enhancement of light extraction efficiency to save money and time of manufacturing.
By simulating plane LED in different CsPbBr3 thickness, we can understand there is fluctuate difference of light extraction efficiency with changes of thickness. At thickness of 50nm, the light extraction efficiency is 13.9%; at 100nm, it’s 21.94%; at 150nm, it’s 13.88% and at 200nm it’s 23.05%. It’s because optical thickness changes of active layer will produce constructive and destructive interference.
By simulating periodic structure in different CsPbBr3 thickness and etching depths, we can understand there is enhancement of light extraction efficiency with increased etching depth(30/50/80/100nm) at 50nm thickness. At etching depth of 30nm, the light extraction efficiency is 18.65%; at 50nm, it’s 22.65%; at 80nm it’s 27.86% and at 100nm it’s 31.34%. It’s because grating phase difference will produce kirchhoff’s diffraction enhancement. But the efficiency will decrease slightly when the etching depth is beyond 100nm because of the increase of reflectivity of the effective medium grating. When the CsPbBr3 thickness is 100nm, at etching depth of 30nm, the light extraction efficiency is 32.88%; at 50nm, it’s 37.69% and the best number; at 80nm, the number decreased to 33.18%. It’s diffraction efficiency decrease because of the distance between point sources and gratings. When CsPbBr3 thickness is 200nm, at etching depth of 30nm, the light extraction efficiency is 32.25% and the best number. Then the number is decreased with increased etching depth. At etching depth of 50nm, the light extraction efficiency is 31.62% and at 80nm it’s 27.61%. It’s the result of destructive interference produced by inclined side. When we change x axis of point sources we can understand there is less light power extracted at inclined side than at flat side. It can prove the destructive interference produced by inclined side.
關鍵字(中) ★ 鈣鈦礦
★  奈米週期結構
★  光萃取率
★  時域有限差分法
關鍵字(英)
論文目次 目錄
摘要…………………………………………………………………………………...i
Abstract………………………………………………………………………………iii
致謝..............................................................................................................................v
目錄…………………………………………………………………………………..vi
圖目錄………………………………………………………………………………..ix
表目錄………………………………………………………………………………..xii
一、序論………………………………………………………………………….......1
1.1前言………………………………………………………………………… …1
1.2 鈣鈦礦LED發展簡述(CsPbBr3材料)………………………………………2
1.3 LED發光效率介紹……………………………………………………………5
1.3.1 發光效率公式介紹(OLED)........................................................................5
1.3.2 發光效率公式介紹(QLED,Perovskite LED).............................................6
1.4 LED光萃取之出光損失………………………………………………………7
1.5 LED光萃取提升方法及圖案化基板分類……………………………………9
1.6 LED光萃取提升理論與限制……………………….......................................12
1.6.1 單層光柵之克希荷夫繞射(Kirchhoff diffraction theory)........................12
1.6.2 單層光柵之等效介質理論(Effective medium theory).............................14
1.6.3 雙層光柵之破壞性干涉影響....................................................................15
1.7 近年LED模擬實驗研究發展……………………………………………….18
1.7.1 低折射率材料(OLED).……………………………….............................18
1.7.2 低折射率材料(QLED)…………………………………………………..22
1.7.3 高折射率材料(GaN LED)………………………………………………25
1.7.4 高折射率材料(Perovskite LED)………………………………………...28
1.8 研究動機…………………………………………………………………….34
二、光學模擬方法與實驗流程……………………………………………………35
2.1 模擬方法…………………………………………………………………….35
2.2 實驗流程…………………………………………………………………….37
2.2.1 實驗用軟體……………………………………………………………..37
2.2.2 基本參數設定………………………………………..............................38
2.2.3 平面結構繪製………………………………………………………......38
2.2.4 週期結構繪製…………………………………………………………..39
2.2.5 LED點光源設定………………………………………..........................41
2.2.6 模擬環境設定……………………………………………......................41
2.2.7 初始出光值之模擬..................................................................................42
三、結果與討論……………………………………………………………………43
3.1 平面結構模擬結果………………………………………………………….43
3.1.1 平面結構出光率計算與波印亭向量介紹………………......................43
3.1.2 平面結構出光率趨勢探討……………………………………………..44
3.2 週期結構模擬結果………………………………………………………….46
3.2.1 週期結構設計、出光率計算與光場圖探討………………………......46
3.2.2 週期結構各發光層厚度各蝕刻深度出光率趨勢初步探討(出光增益原
因)………………………………………………………………………….......51
3.2.3 等效折射率對於出光率之影響..............................................................53
3.2.4 雙層光柵對於出光率之影響(斜邊厚度變化)………………………...54
3.2.5 週期結構出光趨勢更深入探討(CsPbBr3厚度100,200nm差異)…....57
3.2.6 週期結構點光源X位置變化出光率趨勢探討(斜邊厚度變化)…….58
四、結論…………………………………………………………………………....61
參考文獻……………………………………………………………………………63
參考文獻 參考文獻

1. J-Z Song,J-H Li,X-M Li,L-M Xu,Y-H Dong,and H-B Zeng,“Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3 )” Advanced Materials,vol.27,7162-7167,2015

2. J-Q Li,X Shan, S.G.R.Bade, T. Geske, Q-L Jiang, X Yang,and Z-B Yu, “Single-Layer Halide Perovskite Light-Emitting Diodes with Sub-Band Gap Turn-On Voltage and High Brightness”, J. Phys. Chem. Lett.,vol.7.4059-4066,2016

3. T. Chiba, K. Hoshi, Y-J Pu, Y. Takeda,Y. Hayashi, S. Ohisa, S. Kawata, and J. Kido, “High Efficiency Perovskite Quantum-Dot Light-Emitting Devices by
Effective Washing Process and Interfacial Energy Level Alignment”, ACS Appl. Mater. Interfaces,vol.9(21),18054-18060,2017

4. K-B Lin, J Xing, L-N Quan, F. P. G. de Arquer, X-W Gong, J-X Lu, L-Q Xie, W-J Zhao, D Zhang,C-Z Yan, W-Q Li, X-Y Liu, Y Lu, J. Kirman, E. H. Sargent, Q-H Xiong and Z-H Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent”,Nature,vol.562,245-248,2018

5. K. Saxena , V.K. Jain and D.S.Mehta, “A review on the light extraction techniques in organic electroluminescent devices”,ELSEVIER Optical Materials,
Vol.32,221-233,2009

6. H. Yersin, A.F.Rausch, R. Czerwieniec, T. Hofbeck andT. Fischer, “The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs”,ELSEVIER Coordination Chemistry Reviews,vol.255,
2622-2652,2011

7. W. Bru¨ tting, J. Frischeisen, T. D. Schmidt, B. J. Scholz, and C. Mayr, “Device efficiency of organic light-emitting diodes: Progress by improved light outcoupling”, Phys. Status Solidi A,vol.210,No.1,44-65,2013

8. Y. Shirasaki, G. J. Supran, M. G. Bawendi and V. Bulović, “Emergence of colloidal quantum-dot light-emitting technologies”,Nature Photonics,
vol.7,13-23,2013

9. A. V. Zayats, I. I. Smolyaninov and A. A. Maradudin, “Nano-optics of surface plasmon polaritons”,ELSEVIER Physics Reports,vol.408,131-314,2005

10. R. Zhu, Z-Y Luo, and S-T Wu, “Light extraction analysis and enhancement in a quantum dot light emitting diode” ,Optics Express,Vol. 22,Issue S7, 1783-1798,2014

11. C-H Chiu,C-H Chien,W-C Chien and Y-H Chen, “To Enhance Light Lumination of OLED Lighting by Film Included Fish Scales”, Society for Information Display,vol.47,Issue 1,1549-1551,2016

12. H-Y Xiang, Y-Q Li, S-S Meng, C-S Lee, L-S Chen,and J-X Tang, “Extremely Efficient Transparent Flexible Organic Light-Emitting Diodes with Nanostructured Composite Electrodes”, Advanced Optical Materials ,1800831,1-9,2018

13. X-F Jing and Y-X Jin, “Transmittance analysis of diffraction phase grating”, Applied Optics,vol.50,Issue 9,pp. C11-18,2010

14.成功大學物理研究所朱淑君,富氏光學/Fourier Optics,Ch3 “純量光波繞射理論”

15. S. S. Trieu, and X-M Jin, “Study of Top and Bottom Photonic Gratings on GaN LED With Error Grating Models”, IEEE Journal of Quantum Electronics,vol.46,
Issue 10,1456-1463,2010

16. T. Schwab,C. Fuchs, R. Scholz,A. Zakhidov, K. Leo, and M. C. Gather, “Coherent mode coupling in highly efficient top-emitting OLEDs on periodically corrugated substrates”, OPTICS EXPRESS, Vol. 22,Issue 7,pp. 7524-7537,2014

17. S-Y Kim and J-J Kim, “Outcoupling efficiency of organic light emitting diodes and the effect of ITO thickness”, ElsevierOrganicElectronics,vol.11,1010-1015,2010

18. K-P Guo, C-F Si, C Han, S-H Pan, G Chen,Y-Q Zheng,W-Q Zhu, J-H Zhang,
C Sun and B Wei, “High-performance flexible inverted organic light-emitting diodes by exploiting MoS2 nanopillar arrays as electron-injecting and light-coupling layers”,
Nanoscale,vol.9,14602-14611,2017

19. Y-B ZHANG, Q-D OU, Y-Q LI, J-D CHEN, X-D ZHAO, J WEI, Z-Z XIE, AND J-X TANG, “Transparent organic light-emitting diodes with balanced white emission by minimizing waveguide and surface plasmonic loss”, Optics Express,
Vol.25,No.14,15662-15675,2017

20. S-G Gim, I-H Lee, J- Y Park and J‐L Lee, “Spontaneously Embedded Scattering Structures in a Flexible Substrate for Light Extraction”,Small,vol.23,Issue 23, 1064128,2017
21. K-H Han, Y-S Park, D-H Cho, Y-N Han, J-H Lee, B-G Yu, N-S Cho, J-I Lee,and J-J Kim, “Optical analysis of power distribution in top-emitting organic light emitting diodes integrated with nano-lens array using finite difference time domain”, ACS Appl. Mater. Interfaces, vol.10,Issue22,18942-18947,2018

22. S-J Kim, J-H Choi, Y-W Park, and B-K Ju, “Enhanced Light Extraction of Flexible Organic Light-emitting Diodes by Ag Nanoparticles as Scattering Layer”,
Society for Information Display,vol.49,Issue 1,1853-1855,2018

23. K. Koc, F. Z. Tepehan,and G. G.Tepehan, “Preparation and Characterization of Self-Assembled Thin Film of MPS-Capped ZnS Quantum Dots for Optical Applications”, Journal of Nanomaterials,vol.2012,1-7,2012

24. Y-L Xu and J. N. Munday, “Light trapping in a polymer solar cell by tailored quantum dot emission”, OPTICS EXPRESS,vol.22,No.S2,259-267,2014

25. C. P.Hernandez, A. Koshelev, S. Dhuey, S. Sassolini, M. Sainato, S. Cabrini and K. Munechika, “Nanoimprinted High-Refractive Index Active Photonic Nanostructures Based on Quantum Dots for Visible Light”, Scientific Reports,
vol.7,No.17645,1-8,2017

26. S-J Wang,X-Y Dou, L. Chen, Y. Fang, A-Q Wang, H-B Shen ,and Z-L Du , “Enhanced light out-coupling efficiency of quantum dot light emitting diodes by nanoimprint lithography” ,Nanoscale, Vol.10, 11651-11656,2018

27. J-S Li , Y. Tang, Z-T Li , X-R Ding , L-S Rao, and B-H Yu, “Effect of Quantum Dot Scattering and Absorption on the Optical Performance of White Light-Emitting Diodes”,IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol. 65, NO. 7, 2877-2884 2018

28. H Chen, Z-Q He, D-D Zhang, C-C Zhang, Y Ding, L. Tetard, S-T Wu, and Y-J Dong, “Bright Quantum Dots Light-Emitting Diodes Enabled by Imprinted Speckle Image Holography Nanostructures”, J. Phys. Chem. Lett.,1-19,2019

29. G.Yu, G Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe,and T. Jimbo, “ Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78-4.77 eV) by spectroscopic ellipsometry and the optical transmission method”, Appl. Phys. Lett. ,vol.70, No.24,3209-3211,1997

30. J-S Li , Y Tang, Z-T Li , X-R Ding and Z Li, “Study on the optical performance of thin-film light-emitting diodes using fractal micro-roughness surface model”,
ELSEVIER Applied Surface Science,vol.410,60-69,2017

31. D-S Shin, T- G Kim, D-J Kim, K-K Kim, and J-S Park, “Light Extraction Enhancement of GaN-Based Light-Emitting Diodes Using Hollow Silica Nanospheres”, Journal of Nanoscience and Nanotechnology, Vol. 17, 4073–4077, 2017

32. K-R Son, B-R Lee andT-G Kim, “Improved optical and electrical properties of GaN-based micro light-emitting diode arrays”,ELSEVIER Current Applied Physics,
1-6,2017

33. Q-Yang Yue, Y Yang, Z-J Cheng and C-S Guo, “Numerical analysis of light extraction enhancement of GaN-based thin-film flip-chip light-emitting diodes with
high-refractive-index buckling nanostructures”,ELSEVIER Results in Physics,vol.9,
1345-1351,2018

34. S. Makarov,A. Furasova, E. Tiguntseva,A. Hemmetter,A. Berestennikov,A. Pushkarev, A. Zakhidov, and Y. Kivshar,“Halide-Perovskite Resonant Nanophotonics”,Advanced Optical Materials ,1800784,1-19,2018

35. G. Murtaza and I.Ahmad , “First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M=Cl,Br,I)”,ELSEVIER Physica B,vol.406,3222-3229,2011

36. X-B Shi, Y Liu, Z-C Yuan, X-K Liu, Y-F Miao, J-P Wang,S. Lenk, S. Reineke, and F. Gao,“Optical Energy Losses in Organic–Inorganic Hybrid
Perovskite Light-Emitting Diodes”,Advanced Optical Materials ,1800667,1-7,2018

37. S-S Meng, Y-Q Li, J-X Tang, “Theoretical perspective to light outcoupling and management in perovskite light-emitting diodes”,Elsevier Organic Electronics,
Vol. 61, 351-358, 2018

38. S-H Jeon, L-F Zhao, Y-J Jung, J -W Kim, S-Y Kim, H-K Kang,J-H Jeong, B. P. Rand, and J-H Lee, “Perovskite Light-Emitting Diodes with Improved Outcoupling Using a High-Index Contrast Nanoarray”,Small,vol.15,Issue 8,1900135,2019

39. Y Cao, N-N Wang, H Tian, J-S Guo, Y-Q Wei, H Chen, Y-F Miao, W Zou,
K Pan,Y-R He, H Cao, Y Ke, M-M Xu, Y Wang, M Yang, K Du, Z Fu, D-C Kong, D-X Dai,Y-Z Jin, G-Q Li, H Li, Q-M Peng, J-P Wang and W Huang, “Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale
structures”,Nature,vol.562,249-253,2018

40. Q-P Zhang, M. M. Tavakoli, L-L Gu, D-Q Zhang, L Tang, Y Gao,
J Guo,Y-J Lin, S-F Leung, S. Poddar, Y Fu and Z-Y Fan, “Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction
on nanophotonic substrates”, Nature Communications,vol.10,No.727,1-9,2019

41. P Chen, Z-Y Xiong, X-Y Wu, M Shao, Y Meng, Z-H Xiong, and C-H Gao, “Nearly 100% Efficiency Enhancement of CH3NH3PbBr3 Perovskite
Light-Emitting Diodes by Utilizing Plasmonic Au Nanoparticles”, J. Phys. Chem. Lett.,vol.8(17),3961-3969,2017

42. Y-H Zhang, H-Q Sun, S Zhang, S-P Li, X Wang, X Zhang,T-Y Liu, and
Z-Y Guo, “Enhancing luminescence in all-inorganic perovskite surface plasmon lightemitting diode by incorporating Au-Ag alloy nanoparticle”,ELSEVIER Optical Materials,vol.89,563-567,2019

43. K Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media”,IEEE Trans.Antennas Propag.,vol.14,
302-307,1966

44. C-H Chan, C-R Lin, M-C Liu, K-M Lee, Z-J Ji,and B-C Huang, “Enhanced Electron Collection and Light Harvesting of CH3NH3PbI3 Perovskite Solar Cells Using Nanopatterned Substrates”, Advanced Materials Interfaces,vol.5,Issue 23,
1800118,2018

45. S.W. Eatona, M-L Lai, N.A. Gibson, A.B.Wong, L-T Dou, J Ma, L-W Wang,
S. R. Leone and P-D Yang, “Lasing in robust cesium lead halide perovskite nanowires”, PNAS,vol.113(8),1993-1998,2016

46. Z-C He, C-M Zhong, S-J Su, M Xu, H-B Wu and Y Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure”
, Nature Photonics,vol.6,591-595,2012

47. https://refractiveindex.info/

48. S-K So, W-K Choi, L-M Leung and K Neyts, “Interference effects in bilayer organic light-emitting diodes”, APPLIED PHYSICS LETTERS,vol.74,No.14,1939-1941,1999

49. S-H Kim, Y-H Song, S-R Jeon,G-M Yang,J-S Ha, S-H Lee, J-H Baek, and H-J Park, “Influence of Interference on Extraction Efficiency of Ultraviolet Vertical Light-Emitting Diodes”, Journal of ELECTRONIC MATERIALS, Vol. 42, No. 8, 2435-2438,2013

50. Y Shen, L-P Cheng, Y-Q Li,W Li, J-E Chen, S-T Lee,and J-X Tang, “High-Efficiency Perovskite Light-Emitting Diodes with Synergetic Outcoupling Enhancement”, Advanced Materials,vol.31,Issue24,1901517,2019
指導教授 詹佳樺 審核日期 2019-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明