博碩士論文 106323903 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.14.133.148
姓名 單夏祺(SHANXIAQI)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 非接觸式章動減速電機結構設計與模擬
相關論文
★ G10液晶玻璃基板之機械手臂牙叉結構改良與最佳化設計★ 線性齒頂修整對正齒輪之傳動誤差與嚙合頻能量影響分析
★ 沖床齒輪分析與改善★ 以互補型盤狀圓弧刀具創成之曲線齒齒輪有限元素應力分析
★ 修整型曲線齒輪對齒面接觸應力與負載下傳動誤差之研究★ 衛載遙測取像儀反射鏡加工缺陷檢測與最佳光學成像品質之運動學裝配設計
★ 應用經驗模態分解法於正齒輪對之傳動誤差分析★ 小軸交角之修整型正齒輪與凹面錐形齒輪組設計與負載下齒面接觸分析
★ 修整型正齒輪對動態模擬與實驗★ 應用繞射光學元件之齒輪量測系統開發
★ 漸開線與切線雙圓弧齒形之諧波齒輪有限元素分析與齒形設計★ 創成螺旋鉋齒刀之砂輪輪廓設計與最佳化
★ 動力刮削創成內正齒輪之刀具齒形輪廓最佳化設計★ Helipoid齒輪接觸特性研究與最佳化分析
★ 高轉速正齒輪之多目標最佳化與動態特性分析★ 圓柱型齒輪之動力刮削刀具輪廓設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著工業機器人技術的不斷發展與應用,人們對機器人關節驅動部件的要求也不斷提高。傳統的串聯式關節驅動減速方案往往限制了機器人關節的靈活性,且伴隨有齒輪嚙合帶來的摩擦磨損與振動問題。為了解決這一問題,論文旨在設計一種結合磁力傳動技術與章動減速原理的非接觸式減速電機,使電機在擁有章動傳動的傳動比大、體積小、結構簡單可靠的優點上,又帶有磁力傳動的振動過濾與超載保護能力。對此,論文開展了如下工作。
首先,在章動原理及少齒差行星傳動機構的基礎上,本文推導出了非接觸式磁力章動傳動方式的傳動比計算方法。根據非接觸式磁力章動減速電機工作原理,結合磁路設計方法與永磁體材料特性,對章動體與永磁體的結構參數進行設計,完成了箱體、外錐章動盤、內錐章動盤以及永磁體的基本結構參數確定。結合磁路設計原理,利用微源法,對第一級與第二級磁力章動減速機構主從動輪之間的磁力與磁力矩進行理論分析,得出非等間距情況下磁力章動減速機構磁力與磁力矩理論計算公式,最後在Solidworks軟體中進行了虛擬設計與裝配,為下一步電機的磁體結構參數研究提供了結構方案與理論基礎。
其次,採用三維有限元計算方法,利用Maxwell軟體分析了兩級磁力章動減速機構的磁極對數、氣隙大小、永磁體厚度、永磁體長度等主要設計參數對電機負載能力的影響,最終確定了電機的永磁體結構參數與磁路排列方式。分別計算了兩級磁力章動減速機構在初始狀態下氣隙磁場中徑向、軸向與周向的磁感應強度變化,並對磁力線分佈規律與磁場變化情況進行了分析,為進一步研究電機內部章動體運動過程中氣隙磁場變化與負載扭矩特性提供了基礎。
最後,利用Maxwell軟體對第一、二級磁力章動減速機構在運行過程中的氣隙磁場變化與矩角特性進行了計算。通過對章動過程中磁力減速機構運動特性的分析,驗證了其能夠達到要求的設計目標。通過對磁場變化的合理分析,提出了一定的改進措施。
摘要(英) The non-contact nutation deceleration motor proposed in this paper adds the magnetic meshing system on the basis of the traditional motor and the reducer, and realizes nutation deceleration effect by relying on the interaction force generated by the magnetic pole of the permanent magnet on the main and slave driving wheels to replace the meshing of the gears in the internal reducer of the original reducer. The motor has the advantages of large transmission ratio, small size, simple and reliable structure of nutation drive, as well as the vibration filtration and overload protection ability of magnetic drive. Papers use 3d design software design of the casing of the motor, nutation and permanent magnet structure, through permanent magnet, magnet arrangement, ratio analysis of the important parameters, such as size, chapters on the secondary magnetic mechanism internal magnetic field in motion and rotation between the air-gap magnetic field in the process of change and the pole to the load characteristics are analyzed.
With the continuous development and application of industrial robot technology, the requirements for robot joint drive components are also increasing. Traditional tandem joint drive reduction schemes often limit the flexibility of the robot joints and are accompanied by frictional wear and vibration problems caused by gear meshing. In order to solve this problem, the dissertation aims to design a non-contact geared motor combining magnetic drive technology and nutation deceleration principle, which makes the motor have the advantages of large transmission ratio, small size and simple and reliable structure. It also has the vibration transmission and overload protection capability of the magnetic drive. In this regard, the dissertation carried out the following work.
Firstly, based on the nutation principle and the planetary gear mechanism with few teeth difference, this dissertation deduced the calculation method of the transmission ratio of the non-contact magnetic nutation transmission mode. According to the working principle of the non-contact magnetic nutation geared motor, combined with the magnetic circuit design method and the characteristics of the permanent magnet material, the structural parameters of the nutating body and the permanent magnet are designed, and the box, the outer cone moving plate and the inner cone are completed. The basic structural parameters of the moving plate and the permanent magnet are determined. Combined with the magnetic circuit design principle, the micro-source method is used to theoretically analyze the magnetic force and magnetic moment between the primary and secondary magnetic rectification mechanism main driven wheels, and the magnetic nutation deceleration mechanism is obtained under non-equal spacing. The theoretical calculation formula of magnetic force and magnetic moment was finally designed and assembled in Solidworks software, which provided the structural scheme and theoretical basis for the study of the magnet structure parameters of the motor.
Secondly, using the three-dimensional finite element method, Maxwell software is used to analyze the influence of main design parameters such as the number of magnetic pole pairs, air gap size, permanent magnet thickness and permanent magnet length on the load capacity of the motor. The permanent magnet structure parameters and magnetic circuit arrangement of the motor. The radial, axial and circumferential magnetic induction changes of the two-stage magnetic nutation deceleration mechanism in the initial state of the air gap magnetic field are calculated, and the magnetic field distribution and magnetic field changes are analyzed. The basis of the air gap magnetic field change and load torque characteristics during the motion of the moving body provides the basis.
Finally, the Maxwell software is used to calculate the air gap magnetic field change and the moment angle characteristics of the first and second-order magnetic nutation deceleration mechanisms during operation. Through the analysis of the motion characteristics of the magnetic deceleration mechanism during the nutation, it is verified that it can meet the required design goals. Through reasonable analysis of the change of the magnetic field, some improvement measures are proposed.
關鍵字(中) ★ 章動傳動
★ 磁力傳動
★ 減速電機
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究目的 8
1.4 論文架構 8
第2章 第一磁力非接觸章動减速電機結構設計與建模 10
2.1 引言 10
2.2 章動原理及傳動比推導 10
2.2.1 章動傳動原理 10
2.2.2 章動傳動比推導 11
2.3 磁力非接觸章動減速電機結構設計 13
2.3.1 永磁材料的選定 14
2.3.2 磁路結構選定 15
2.3.3 結構方案設計 16
2.4 磁力非接觸式章動減速電機磁力與扭矩理論計算 18
2.4.1第一級磁力章動減速機構磁力與磁力矩理論計算 18
2.4.2第二級非接觸章動減速機構磁力與磁力矩理論計算 25
2.5本章小結 30
第3章磁力非接觸式章動減速電機結構參數對負載扭矩影響分析 32
3.1引言 32
3.2Ansys Maxwell軟體分析流程 32
3.3永磁體關鍵參數對減速電機負載能力影響 33
3.3.1第一級磁極數比對其最大負載扭矩的影響 34
3.3.2第二級磁極數比對其最大負載扭矩的影響 37
3.3.3第一級章動減速機構永磁體厚度對電機轉矩影響分析 39
3.3.4第二級章動減速機構永磁體厚度對電機轉矩影響分析 39
3.3.5第一級章動減速機構永磁體長度對電機轉矩影響分析 40
3.3.6第二級章動減速機構永磁體長度對電機轉矩影響分析 40
3.3.7第一級章動減速機構氣隙大小對電機轉矩影響分析 41
3.3.8第二級章動減速機構氣隙大小對轉矩的影響 42
3.4本章小結 43
第4章磁力非接觸式章動減速電機內部磁場靜態分析 44
4.1引言 44
4.2磁力章動減速電機第一級章動機構靜態磁場分析 44
4.2.1第一級章動傳動機構磁感應強度B的向量分析 44
4.2.2第一級磁力章動減速機構氣隙不同位置處總磁感應強度分析 45
4.2.3第一級章動减速機構氣隙不同位置處不同方向上磁感應强度分析 47
4.3磁力章動減速電機第二級章動機構靜態磁場分析 50
4.3.1第二級章動傳動機構磁感應強度B的向量分析 51
4.3.2第二級磁力章動減速機構氣隙不同位置處磁感應強度分析 51
4.3.3第二級章動减速機構氣隙不同位置處不同方向上磁感應强度分析 54
4.4本章小結 57
第5章 磁力非接觸式章動減速電機內部磁場動力學分析 58
5.1引言 58
5.2第一級磁力章動減速機構磁場動力學分析 58
5.2.1內錐章動盤1章動一周同時自轉36°過程中內部磁場動力學分析 58
5.2.2電磁鐵迴圈工作10周,內錐章動盤自轉一周過程中第一級减速機構內部磁場動力學分析 61
5.2.3第一級非接觸式章動減速機構矩角特性分析 64
5.3第二級減速機構內部磁場動力學分析 65
5.3.1外錐章動盤3每章動45°並自轉4.5°同時內錐章動盤自轉0.692°時內部磁場動力學分析 66
5.3.2外錐章動盤3自轉6.5周內錐章動盤4自轉1周過程中內部磁場動力學分析 68
5.3.3第二級非接觸式章動減速機構矩角特性分析 71
第六章 結論 73
6.1 結論 73
6.2 未來工作 73
參考文獻 75
參考文獻 [1] 葛藤, 宮鎮. 齒輪及齒輪箱雜訊,振動研究的現狀[J]. 雜訊與振動控制, 1989(1):26-30.
[2] 趙迪. 變時延環境下的任務級遙操作關鍵技術研究[D]. 華中科技大學, 2011.
[3] 劉明哲, 庹先國, 李哲, et al. 機器人在核應急輻射環境綜合監測中的應用研究[J]. 機器人技術與應用, 2011(3):21-23.
[4] Sensinger, Lipsey. Cycloid vs. harmonic drives for use in high ratio, single stage robotic transmissions[C]// IEEE International Conference on Robotics & Automation. IEEE, 2012.
[5] 王陳琪. 高速高精度平面幷聯機器人時間最優控制系統的研究[D]. 哈爾濱工業大學, 2006.
[6] 李敏. 濾波驅動機構不確定性補償的機器人魯棒滑模控制方法研究[D]. 重慶大學.
[7] 薄書信. 諧波齒輪傳動柔輪應力及輪齒磨損分析[D]. 哈爾濱工業大學, 2008.
[8] Saribay Z B , Bill R C . Design analysis of Pericyclic Mechanical Transmission system[J]. Mechanism and Machine Theory, 2013, 61(none):102-122.
[9] 朱維金. 章動牽引式無級變速器的參數化設計[D]. 東北大學, 2008.
[10] 史健碩. 章動牽引式無級變速器的變速曲綫模擬[J]. 科技創新導報, 2017(15).
[11] Fang T , Ke T , Fang J . Design and Test of Nutation Reducer Used in Screw Pump[J]. Journal of Mechanical Transmission, 2005.
[12] 姚立綱, 顧炳, 魏國武. 雙圓弧螺旋錐齒輪章動傳動的分析與建模[C]// 2005年中國機械工程學會年會論文集. 2005.
[13] 黃鼎鍵, 黃鼎鍵, 丁森煌, et al. 新型非接觸式章動傳動機構設計與實驗分析[J]. 福建工程學院學報, 2016, 14(1):51-54.
[14] Hong J , Yao L , Ji W , et al. Kinematic Modeling for the Nutation Drive Based on Screw Theory [J]. Procedia Cirp, 2015, 36:123-128.
[15] 曹家勇, 姚淳哲, 王鏡森, et al. 磁齒輪嚙合型雙轉子電機建模及控制器設計[J]. 機械傳動, 2018.
[16] 李國坤, 賈汝正, 姬全勝. 磁力傳動和磁力泵[J]. 中國稀土學報, 1994(S1):534-537.
[17] Mattia F , Piergiorgio A , Gregor G , et al. Magnetic transmission gear finite element simulation with iron pole hysteresis[J]. Open Physics, 16(1):105-110.
[18] Yeong L H , Soo P G . Analysis of the Resonance Characteristics by a Variation of Coil Distance in Magnetic Resonant Wireless Power Transmission[J]. IEEE Transactions on Magnetics, 2018:1-4.
[19] Eiki M , Noboru N , Katsuhiro H . Magnetic-geared motor with a continuously variable transmission gear ratio and its control method[J]. Electronics and Communications in Japan, 2018.
[20] 沈蛟驍. 基於STM32的永磁同步直綫電機控制系統的研究[D]. 2016.
[21] 王健, 劉以勇, 王淑華, et al. 釹鐵硼低溫永磁波蕩器靜態熱負載研究[J]. 核技術, 2017(8).
[22] 毛玉平. 新型電磁吸盤的研究與設計[D]. 南京理工大學, 2004.
[23] Dow G R . HEART BOOSTER PUMP WITH MAGNETIC DRIVE[J].
[24] Ebrahimi B , Khamesee M B , Golnaraghi M F . Design and modeling of a magnetic shock absorber based on eddy current damping effect[J]. Journal of Sound & Vibration, 2008, 315(4):875-889.
[25] Li W A, Zhang G, Li W, et al. Optimization of Radial-type Superconducting Magnetic Bearing Using the Taguchi Method[J]. Physica C Superconductivity & Its Applications, 2018, 550:S0921453417303878.
[26] 彭科容. 永磁磁力耦合器結構與特性研究[D]. 哈爾濱工業大學, 2008.
[27] C. G.Armstrong. Power transmitting device[P]. 美國專利, 687292, 1901.
[28] Ikuta K , Makita S , Arimoto S . Non-contact magnetic gear for micro transmission mechanism[C] Proc. IEEE Micro Electro Mechanical Systems,MEMS’91,pp.125-130.Feb.1991..
[29] Tsurumoto K . Power Transmission of Magnetic Gear Using Common Meshing and Insensibility to Center Distance[J]. IEEE Translation Journal on Magnetics in Japan, 2008, 3(7):588-589.
[30] Tsurumoto K .Some Considerations on the Improvement of Performance Characteristics of Magnetic Gear[J]. IEEE Translation Journal on Magnetics in Japan, 1989, 4(9):576-582.
[31] Tsurumoto K . Study of a Trial Production of Magnetic Gear with Variable Circular Arc Tooth Profile[J]. IEEE Translation Journal on Magnetics in Japan, 2008, 5(8):690-696.
[32] Tsurumoto K . Generating Mechanism of Magnetic Force in Meshing Area of Magnetic Gear Using Permanent Magnet[J]. IEEE Translation Journal on Magnetics in Japan, 1991, 6(6):531-536.
[33] Tsurumoto K . Basic Analysis on Transmitted Force of Magnetic Gear Using Permanent Magnet[J]. IEEE Translation Journal on Magnetics in Japan, 1992, 7(6):447-452.
[34] Tsurumoto K . Some Improvements of Starting Characteristics of Magnetic Gear by Eddy Current Effect[J]. IEEE Translation Journal on Magnetics in Japan, 1993, 8(1):62-66.
[35] Okano M, Tsurumoto K , Togo S , et al. Characteristics Of the Magnetic Gear Using a Bulk High-Tc Superconductor[J]. IEEE Transactions on Applied Superconductivity, 2002, 12(1):979-983.
[36] Kikuchi S , Tsurumoto K . Trial construction of a new magnetic skew gear using permanent magnet[J]. IEEE Transactions on Magnetics, 1994, 30(6):4767-4769.
[37] Nehl T W, Lequesne B, Gangla V, et al. Nonlinear two-dimensional finite element modeling of permanent magnet eddy current couplings and brakes[J]. IEEE Transactions on Magnetics Mag, 1994, 30(5):3000-3003.
[38] Shin K J , Cha H R , Seo Y J , et al. Design of bike inverter using adaptive state observer of DC-link [C] // International Conference on Electrical Machines & Systems. IEEE, 2012.
[39] Jang S M , Cho H W , Lee S H , et al. The Influence of Magnetization Pattern on the Rotor Losses of Permanent Magnet High-Speed Machines[J]. IEEE Transactions on Magnetics, 2004, 40(4):2062-2064.
[40] Joaquim Girardello Detoni,Walter Jesus Paucar asas.Finite dement modeling of eddy-current ouplers [C] //ABCM Symposium eries in Mechatmnics,2010,4,264—269
[41] 王堅, 林鶴雲, 房淑華,等. 利用子域法的永磁渦流聯軸器解析建模分析[J]. 中國電機工程學報, 2017, 37(15):251-259+324.
[42] 張秀文. 高性能磁力齒輪的傳動性能分析與實驗研究[D]. 2016.
[43] Mezani S , Atallah K , Howe D . A high-performance axial-field magnetic gear[J]. Journal of Applied Physics, 2006, 99(8):08R303.
[44] Atallah K , Wang J , Mezani S , et al. A Novel High-Performance Linear Magnetic Gear[J]. Journal of Applied Physics, 2005, 97(10):2844.
[45] 趙韓, 田傑. 用有限元法設計稀土永磁齒輪傳動[J]. 機械科學與技術, 2000, 19(2):207-209.
[46] 楊志軼, 趙韓, 田傑,等. 采用有限元法分析徑向永磁軸承的力學特性[J]. 合肥工業大學學報(自然科學版), 2001, 24(4):477-481.
[47] 趙韓, 王勇, 田傑. 磁力機械研究綜述[J]. 機械工程學報, 2003, 39(12):31-36.
[48] 李多民. 磁力傳動的理論、試驗與應用研究[D]. 1999.
[49] Jorgensen F T , Andersen T O , Rasmussen P O . The Cycloid Permanent Magnetic Gear[J]. IEEE Transactions on Industry Applications, 2008, 44(6):1659-1665.
[50] Atallah K , Calverley S D , Howe D . High-performance magnetic gears[J]. Journal of Magnetism & Magnetic Materials, 2004, 272-276(supp-S):0-0.
[51] Holehouse R C , Atallah K , Wang J . Design and Realization of a Linear Magnetic Gear[J]. IEEE Transactions on Magnetics, 2011, 47(10):4171-4174.
[52] Jian L , Chau K , Jiang J . A magnetic-geared outer-rotor permanent-magnet brushless machine for wind power generation [J]. IEEE Transactions on Industry Applications, 2009.
[53] A. M. Maroth. Speed-Change Mechanical Transmission[P]. U.S. Patent 3,139,771, 1964.
[54] A. M. Maroth, Uwe Riede. Nutation Drive: A High-Ratio Power Transmission[J]. Mechanical Engineering, 1997, 95(2): 30-34.
[55] Gupta P K , White H V . On the Kinematics of a Nutating Mechanical Drive[J]. Journal of Applied Mechanics, 1975, 42(2):507.
[56] I. I.Artobolevsky. Mechanisms in Modern Engineering Design[J], 1976: 45-48.
[57] Y. Kemper. The Nutating Traction Drive[J]. Journal of engineering for power Trans ASME, 1981, 103(1): 154-157.
[58] Y. Kemper. Continuously Variable Traction Drive for Heavy-duty Agricultural and Industrial Applications[J]. SAE Internal, 1981: 1-10.
[59] K. Suzumori, T. Kanda, K. Uzuka, et al. Nutation Motor: A New Direct-Drive Stepping Motor for Robots[J]. Institute of Electrical and Electronics Engineers Inc, 2004: 21-22.
[60] K. Suzumori, T. Nagata, T. Kanda, et al. Development of Electromagnetic Nutation Motor (Electromagnetic Investigation)[J]. Journal of Robotics and Mechatronics, 2004, 16(3): 21-22.
[61] ] K. Uzuka, I. Enomoto, K. Suzumori. Development of Nutation Motors (1st Report, Driving Principle and Basic Characteristics of Pneumatic Nutation Motor)[J]. Transactions of the Japan Society of Mechanical Engineers, 2006, 72(4): 1194-1199.
[62] K. Uzuka, I. Enomoto, K. Suzumori. Development of Nutation Motors (2nd Report, Development of Practical Model by the OF Type Bevel Gears and Diaphragm)[J]. Transactions of the Japan Society of Mechanical Engineers, 2006, 72(4): 1200-1206.
[63] K. Uzuka, I. Enomoto, K. Suzumori, et al. Development of Nutation Motors (3rd Report, Development of Electromagnetic Nutation Motor by the of Type Bevel Gears and Electromagnets)[J]. Transactions of the Japan Society of Mechanical Engineers, 2007, 73(4): 1188-1195.
[64] K. Uzuka, I. Enomoto, K. Suzumori. Development of Nutation Motors (4th Report, Development of Small-Sized and High Torque Pneumatic Nutation Motor by the OF Type Bevel Gears and Principle of Lever)[J]. Transactions of the Japan Society of Mechanical Engineers, 2007, 73(6): 1731-1737.
[65] K. Uzuka, I. Enomoto, K. Suzumori. Comparative Assessment of Several Nutation Motor Types[J]. IEEE/ASME Transactions on Mechatronics, 2009, 14(1): 82-92.
[66] S. ODA, K. Suzumori, K. Uzuka, et al. Development of Nutation Motors (Improvement of Pneumatic Nutation Motor by Optimizing Diaphragm Design)[J]. Journal of Mechanical Science and Technology, 2010: 25-28.
[67] 趙建衡, 張根保. 章動輪系及其傳動比計算[J]. 機械科學與技術, 1996, 25(5): 21-23.
[68] 張根保. 章動齒輪傳動機構簡介[J]. 機械, 1997, 24(2): 14-15.
[69] 劉順淑. 章動齒輪減速裝置傳動比的計算[J]. 渝州大學學報, 1997(4):30-34.
[70] 王曉勇. 基於UG的章動齒輪减速器建模和模擬研究[D]. 昆明理工大學, 2006.
[71] 張純.章動活齒傳動的設計製造技術研究[J]. 大連交通大學學報, 2009(5):84-84.
[72] 何韶君. 漸開綫齒輪章動傳動的干涉問題[J]. 機械科學與技術, 1998, (3): 359-361.
[73] 何韶君. 漸開線齒輪章動傳動的彈流潤滑分析[J]. 潤滑與密封, 1995, (1): 28-31.
[74] 何韶君. 章動齒輪傳動錐滾式輸出機構的理論研究[J]. 煤礦機械, 2007, 28(2): 55-57.
[75] 何韶君. 章動齒輪傳動零齒差輸出機構的强度研究[J]. 機械設計與製造, 2007, (8): 23-24.
[76] 蔡英傑, 姚立綱, 等. 雙圓弧螺旋錐齒輪章動傳動運動和動力學模擬[J]. 傳動技術, 2007, 21 (4): 22-26.
[77] B. Gu, L. G. Yao, et al. The Analysis and Modeling for Nutation Drives with Double Circular-Arc Helical Bevel Gears[J]. Material Science Forum, 2005, 505: 949-954.
[78] Z. Lin, L. G. Yao. Mathematical Model and 3D Modeling of Involute Spiral Bevel Gears for Nutation Drive[J].Advanced Materials Research, 2013, 694: 503-506.
[79] Z. Lin, L. G. Yao. General Mathematical Model of Internal Meshing Spiral Bevel Gears for Nutation Drive[J].Applied Mechanics and Materials, 2011, 101: 708-712.
[80] Z. Lin, L. G. Yao, el al. Transmission Ratio Analysis and Controllable Tooth Profile Modeling for the Nutation Drive with Double Circular-Arc External and Internal Spiral Bevel Gears[J].Advanced Materials Research, 2010, 97: 3128-3134.
[81] Z. Lin, L. G. Yao, et al. Contact Trace of Internal Meshing Double Circular-Arc Spiral Bevel Gears[J].Advanced Materials Research, 2014, 945: 822-825.
[82] J. L. Hong, L. G. Yao, et al. Kinematic Modeling for the Nutation Drive Based on Screw Theory[J]. Procedia CIRP, 2015, 36: 123-128.
[83] 沈賀文. 微型章動心室輔助泵的可行性分析與設計[D]. 2014.
[84] Huang D J, Yao L G, Li W J, et al. Geometric modeling and torque analysis of the magnetic nutation gear drive[J]. Forschung Im Ingenieurwesen, 2017,81(2-3):101-108.
指導教授 陳怡呈 審核日期 2019-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明