博碩士論文 106324005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.17.186.218
姓名 吳致誼(Chih Yi Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鋯金屬有機框架結構與石墨烯薄膜之氣體輸送 機制模擬探討
(Gas Transport Simulation in Zirconium-Based Metal-Organic Frameworks and Graphene Membranes)
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討
★ 蒸氣相成長金屬有機框架材料合成★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性
★ 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
★ 鋯金屬有機框架結構之二氧化碳吸附性質探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 擁有分子篩機制的薄膜在氣體分離方面有許多顯著的突破,本研究以
模擬輔佐實驗探討氣體分離之機制為動機,與京都大學物質 -細胞綜合系統研究所Sivaniah Group合作並探討兩種薄膜類型,分別為 鋯金屬有機框架與石墨烯薄膜。第一種研究的薄膜為鋯金屬有機框架,為了探討不同配位機對於氣體分離在通透量與選擇性的影響,本研究從X光繞射的結晶數據得到原始數據,並系統性的清理得到最穩定的結構。在定義氣體路徑後利用基於密度泛涵理論之nudged elastic band計算其能量路徑,並比較不同配位機 的能量路徑與實驗測量到的選擇性。數據顯示,不同配位機的形成的窗口大小影響了氣體的選擇性,也說明了分子篩薄膜中氣體分離的機制。
第二個研究探討了石墨烯層間厚度與氣體分離的關係。本研究採取兩種
分析手法,分別為非平衡系統分子動力學與勻相薄膜 分析 進行模擬。 從勻相薄膜分析得出,證明了層間厚度影響吸附能之重要性。而從非平衡系統分子動力學所模擬數據也符合實驗測量之選擇性,也根據氣體位置,了解氣體通透薄膜的詳細過程。
摘要(英) Possessing both high permeability and selectivity, inorganic membranes with molecular sieving mechanism are raising attention among researchers. In collaboration with iCeMS Sivaniah group, two types of molecular sieving membranes were investigated with computational methods. In our first project, to understand how different ligands affect the selectivity in UiO-66 based MOFs, we constructed the models from XRD data. Nudged elastic band (NEB) method is then implemented for the diffusion pathway to calculate the energy barrier difference. Our results matched the selectivity measured in experiment, which indicates the molecular sieving mechanism from different degree of gate restriction.
The second project involves simulations on graphene membrane due to its outstanding permeability and selectivity measured from experiment, we discussed how the interlayer spacing of graphene affects the permeability. Non-equilibrium molecular dynamics and confined membrane simulation were carried out in this study. A critical interspacing of 6.375 Å was detected, where the adsorption energy of CH4 surpasses N2 when we gradually increase the thickness. The calculated selectivities from NEMD simulation also agree well with experimental results. Snapshots of NEMD simulation are taken to analyze the gas position as a function of simulation time.
關鍵字(中) ★ 鋯金屬有機框架
★ 石墨烯
★ 氣體分離
★ 分子模擬
★ 分子篩機制
關鍵字(英) ★ UiO-66
★ Graphene
★ Gas separation
★ Molecular Simulation
★ Molecular sieving
論文目次 Table of Content
摘要 …………………………………………………………………………..i
Abstract ii
Acknowledgment iii
List of Figures vi
List of Tables x
Chapter 1 Background 1
1.1 Introduction 1
1.2 Literature Review 2
1.2.1 UiO-based MOFs 2
1.2.2 Graphene Membrane 8
1.3 Motivation 16
1.3.1 UiO-based MOFs 16
1.3.2 Graphene Membrane 17
Chapter 2 Theory 18
2.1 First-Principles Calculation 18
2.2 Bloch’s Theorem 20
2.3 Self-Consistent Field (SCF) 21
2.4 Pseudopotential 21
2.5 Cutoff Energy 22
2.6 K-point Sampling 23
2.7 Monte Carlo 23
2.8 Molecular Dynamics 25
2.9 Force Field 27
2.10 Mean Square Displacement (MSD) 28
2.11 Diffusivity 29
Chapter 3 Computational Details 30
3.1 Software & Modules 30
3.2 UiO-66 Based MOFs 31
3.2.1 Model Construction 31
3.2.2 Diffusion Pathway 37
3.2.3 CASTEP Parameters 38
3.3 Graphene Membrane 39
3.3.1 Non-equilibrium Molecular Dynamics (NEMD) 39
3.3.2 Confined Membrane Simulation 40
Chapter 4 Results and Discussion 42
4.1 UiO-66 Based MOFs 42
4.1.1 Gate Size of UiO-66 Based MOFs 42
4.1.2 Energy Barrier Difference during Diffusion 45
4.2 Graphene Membrane 50
4.2.1 Thickness Comparison 51
4.2.2 Confined Diffusion Test 53
4.2.3 Confined Diffusion Test 55
4.2.4 Non-equilibrium Molecular Dynamics (NEMD) 57
Chapter 5 Conclusions 65
5.1 UiO-66 Based MOFs 65
5.2 Graphene Membrane 66
Chapter 6 Future Work 67
6.1 UiO-66 Based MOFs 67
6.2 Graphene Membrane 67
References 69
參考文獻 1. Reiner, D.M., Learning through a portfolio of carbon capture and storage demonstration projects. Nature Energy, 2016. 1.
2. Zimmerman, C.M., A. Singh, and W.J. Koros, Tailoring mixed matrix composite membranes for gas separations. Journal of Membrane Science, 1997. 137(1-2): p. 145-154.
3. Robeson, L.M., The upper bound revisited. Journal of Membrane Science, 2008. 320(1-2): p. 390-400.
4. Shah, M., M.C. McCarthy, S. Sachdeva, A.K. Lee, and H.K. Jeong, Current Status of Metal-Organic Framework Membranes for Gas Separations: Promises and Challenges. Industrial & Engineering Chemistry Research, 2012. 51(5): p. 2179-2199.
5. Baker, R.W., Future directions of membrane gas separation technology. Industrial & Engineering Chemistry Research, 2002. 41(6): p. 1393-1411.
6. Alvaro, M., E. Carbonell, B. Ferrer, F.X. Llabres i Xamena, and H. Garcia, Semiconductor behavior of a metal-organic framework (MOF). Chemistry, 2007. 13(18): p. 5106-12.
7. Xamena, F.X.L.I., A. Abad, A. Corma, and H. Garcia, MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF. Journal of Catalysis, 2007. 250(2): p. 294-298.
8. Caro, J., Are MOF membranes better in gas separation than those made of zeolites? Current Opinion in Chemical Engineering, 2011. 1(1): p. 77-83.
9. Park, K.S., Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O′Keeffe, and O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(27): p. 10186-10191.
10. Kaye, S.S., A. Dailly, O.M. Yaghi, and J.R. Long, Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). Journal of the American Chemical Society, 2007. 129(46): p. 14176-7.
11. Prestipino, C., L. Regli, J.G. Vitillo, F. Bonino, A. Damin, C. Lamberti, A. Zecchina, P.L. Solari, K.O. Kongshaug, and S. Bordiga, Local Structure of Framework Cu(II) in HKUST-1 Metallorganic Framework: Spectroscopic Characterization upon Activation and Interaction with Adsorbates. Chemistry of Materials, 2006. 18(5): p. 1337-1346.
12. Cavka, J.H., S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, and K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008. 130(42): p. 13850-1.
13. Low, B.T., Y. Xiao, T.S. Chung, and Y. Liu, Simultaneous Occurrence of Chemical Grafting, Cross-Linking, and Etching on the Surface of Polyimide Membranes and Their Impact on H2/CO2Separation. Macromolecules, 2008. 41(4): p. 1297-1309.
14. Shao, L., C.H. Lau, and T.S. Chung, A novel strategy for surface modification of polyimide membranes by vapor-phase ethylenediamine (EDA) for hydrogen purification. International Journal of Hydrogen Energy, 2009. 34(20): p. 8716-8722.
15. Yang, T.X., Y.C. Xiao, and T.S. Chung, Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification. Energy & Environmental Science, 2011. 4(10): p. 4171-4180.
16. Yang, T.X., G.M. Shi, and T.S. Chung, Symmetric and Asymmetric Zeolitic Imidazolate Frameworks (ZIFs)/Polybenzimidazole (PBI) Nanocomposite Membranes for Hydrogen Purification at High Temperatures. Advanced Energy Materials, 2012. 2(11): p. 1358-1367.
17. Wijenayake, S.N., N.P. Panapitiya, S.H. Versteeg, C.N. Nguyen, S. Goel, K.J. Balkus, I.H. Musselman, and J.P. Ferraris, Surface Cross-Linking of ZIF-8/Polyimide Mixed Matrix Membranes (MMMs) for Gas Separation. Industrial & Engineering Chemistry Research, 2013. 52(21): p. 6991-7001.
18. Li, F.Y., Y. Xiao, Y.K. Ong, and T.-S. Chung, UV-Rearranged PIM-1 Polymeric Membranes for Advanced Hydrogen Purification and Production. Advanced Energy Materials, 2012. 2(12): p. 1456-1466.
19. Bux, H., F. Liang, Y. Li, J. Cravillon, M. Wiebcke, and J. Caro, Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009. 131(44): p. 16000-1.
20. Li, Y.S., F.Y. Liang, H. Bux, A. Feldhoff, W.S. Yang, and J. Caro, Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity. Angewandte Chemie International Edition, 2010. 49(3): p. 548-51.
21. Dong, X.L., K. Huang, S.N. Liu, R.F. Ren, W.Q. Jin, and Y.S. Lin, Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane: defect formation and elimination. Journal of Materials Chemistry, 2012. 22(36): p. 19222-19227.
22. Huang, A., H. Bux, F. Steinbach, and J. Caro, Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. Angewandte Chemie International Edition, 2010. 49(29): p. 4958-61.
23. Huang, A. and J. Caro, Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity. Angewandte Chemie International Edition, 2011. 50(21): p. 4979-82.
24. Poshusta, J.C., V.A. Tuan, J.L. Falconer, and R.D. Noble, Synthesis and permeation properties of SAPO-34 tubular membranes. Industrial & Engineering Chemistry Research, 1998. 37(10): p. 3924-3929.
25. Huang, A.S., F.Y. Liang, F. Steinbach, T.M. Gesing, and J. Caro, Neutral and Cation-Free LTA-Type Aluminophosphate (AlPO4) Molecular Sieve Membrane with High Hydrogen Permselectivity. Journal of the American Chemical Society, 2010. 132(7): p. 2140-+.
26. Li, Z., F.Y. Liao, F. Jiang, B. Liu, S. Ban, G.J. Chen, C.Y. Sun, P. Xiao, and Y.F. Sun, Capture of H2S and SO2 from trace sulfur containing gas mixture by functionalized UiO-66(Zr) materials: A molecular simulation study. Fluid Phase Equilibria, 2016. 427: p. 259-267.
27. Yang, Q.Y., A.D. Wiersum, H. Jobic, V. Guillerm, C. Serre, P.L. Llewellyn, and G. Maurin, Understanding the Thermodynamic and Kinetic Behavior of the CO2/CH4 Gas Mixture within the Porous Zirconium Terephthalate UiO-66(Zr): A Joint Experimental and Modeling Approach. Journal of Physical Chemistry C, 2011. 115(28): p. 13768-13774.
28. Jonsson, H., G. Mills, and K. W. Jacobsen, Nudged elastic band method for finding minimum energy paths of transitions. 1998. p. 385-404.
29. Vandichel, M., J. Hajek, A. Ghysels, A. De Vos, M. Waroquier, and V. Van Speybroeck, Water coordination and dehydration processes in defective UiO-66 type metal organic frameworks. Crystengcomm, 2016. 18(37): p. 7056-7069.
30. Chen, D.L., S.N. Wu, P.Y. Yang, S.H. He, L. Dou, and F.F. Wang, Ab Initio Molecular Dynamic Simulations on Pd Clusters Confined in UiO-66-NH2. Journal of Physical Chemistry C, 2017. 121(16): p. 8857-8863.
31. Sholl, D.S. and R.P. Lively, Seven chemical separations to change the world. Nature, 2016. 532(7600): p. 435-7.
32. Park, H.B., J. Kamcev, L.M. Robeson, M. Elimelech, and B.D. Freeman, Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 2017. 356(6343).
33. Ding, L., Y. Wei, L. Li, T. Zhang, H. Wang, J. Xue, L.X. Ding, S. Wang, J. Caro, and Y. Gogotsi, MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 2018. 9(1): p. 155.
34. Li, H., Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H.J. Ploehn, Y. Bao, and M. Yu, Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science, 2013. 342(6154): p. 95-8.
35. Wang, L., M.S.H. Boutilier, P.R. Kidambi, D. Jang, N.G. Hadjiconstantinou, and R. Karnik, Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat Nanotechnol, 2017. 12(6): p. 509-522.
36. Jiang, D.E., V.R. Cooper, and S. Dai, Porous Graphene as the Ultimate Membrane for Gas Separation. Nano Letters, 2009. 9(12): p. 4019-4024.
37. Green, A.A. and M.C. Hersam, Solution phase production of graphene with controlled thickness via density differentiation. Nano Letters, 2009. 9(12): p. 4031-6.
38. Bunch, J.S., S.S. Verbridge, J.S. Alden, A.M. van der Zande, J.M. Parpia, H.G. Craighead, and P.L. McEuen, Impermeable atomic membranes from graphene sheets. Nano Letters, 2008. 8(8): p. 2458-62.
39. Yoshida, H. and L. Bocquet, Labyrinthine water flow across multilayer graphene-based membranes: Molecular dynamics versus continuum predictions. The Journal of Chemical Physics, 2016. 144(23): p. 234701.
40. Jiao, S. and Z. Xu, Selective gas diffusion in graphene oxides membranes: a molecular dynamics simulations study. ACS Appl Mater Interfaces, 2015. 7(17): p. 9052-9.
41. Chen, J.J., W.W. Li, X.L. Li, and H.Q. Yu, Improving biogas separation and methane storage with multilayer graphene nanostructure via layer spacing optimization and lithium doping: a molecular simulation investigation. Environmental Science & Technology, 2012. 46(18): p. 10341-8.
42. Seo, D.H., S. Pineda, Y.C. Woo, M. Xie, A.T. Murdock, E.Y.M. Ang, Y. Jiao, M.J. Park, S.I. Lim, M. Lawn, F.F. Borghi, Z.J. Han, S. Gray, G. Millar, A. Du, H.K. Shon, T.Y. Ng, and K.K. Ostrikov, Anti-fouling graphene-based membranes for effective water desalination. Nature Communications, 2018. 9(1): p. 683.
43. Kang, Z.X., S.S. Wang, L.L. Fan, M.H. Zhang, W.P. Kang, J. Pang, X.X. Du, H.L. Guo, R.M. Wang, and D.F. Sun, In situ generation of intercalated membranes for efficient gas separation. Communications Chemistry, 2018. 1.
44. Hu, Y.X., J. Wei, Y. Liang, H.C. Zhang, X.W. Zhang, W. Shen, and H.T. Wang, Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes. Angewandte Chemie-International Edition, 2016. 55(6): p. 2048-2052.
45. Wang, X., C. Chi, K. Zhang, Y. Qian, K.M. Gupta, Z. Kang, J. Jiang, and D. Zhao, Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nature Communications, 2017. 8: p. 14460.
46. Peng, Y., Y.S. Li, Y.J. Ban, H. Jin, W.M. Jiao, X.L. Liu, and W.S. Yang, Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014. 346(6215): p. 1356-1359.
47. Achari, A., S. Sahana, and M. Eswaramoorthy, High performance MoS2 membranes: effects of thermally driven phase transition on CO2 separation efficiency. Energy & Environmental Science, 2016. 9(4): p. 1224-1228.
48. Fan, H., A. Mundstock, A. Feldhoff, A. Knebel, J. Gu, H. Meng, and J. Caro, Covalent Organic Framework-Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation. Journal of the American Chemical Society, 2018. 140(32): p. 10094-10098.
49. Fu, J., S. Das, G. Xing, T. Ben, V. Valtchev, and S. Qiu, Fabrication of COF-MOF Composite Membranes and Their Highly Selective Separation of H2/CO2. Journal of the American Chemical Society, 2016. 138(24): p. 7673-80.
50. de Vos, R.M. and H. Verweij, High-selectivity, high-flux silica membranes for gas separation. Science, 1998. 279(5357): p. 1710-1.
51. Zhang, F., X.Q. Zou, X. Gao, S.J. Fan, F.X. Sun, H. Ren, and G.S. Zhu, Hydrogen Selective NH2-MIL-53(Al) MOF Membranes with High Permeability. Advanced Functional Materials, 2012. 22(17): p. 3583-3590.
52. Kang, Z.X., M. Xue, L.L. Fan, L. Huang, L.J. Guo, G.Y. Wei, B.L. Chen, and S.L. Qiu, Highly selective sieving of small gas molecules by using an ultra-microporous metal-organic framework membrane. Energy & Environmental Science, 2014. 7(12): p. 4053-4060.
53. Hoover, Nonequilibrium molecular dynamics. Condensed Matter Physics, 2005. 8(2).
54. Dai, H.W., Z.J. Xu, and X.N. Yang, Water Permeation and Ion Rejection in Layer-by-Layer Stacked Graphene Oxide Nanochannels: A Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2016. 120(39): p. 22585-22596.
55. Payne, M.C., M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Iterative minimization techniques forab initiototal-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 1992. 64(4): p. 1045-1097.
56. Yang, J., Y. Ren, A.-m. Tian, and H. Sun, COMPASS Force Field for 14 Inorganic Molecules, He, Ne, Ar, Kr, Xe, H2, O2, N2, NO, CO, CO2, NO2, CS2, and SO2, in Liquid Phases. The Journal of Physical Chemistry B, 2000. 104(20): p. 4951-4957.
57. BIOVIA, D. S., Materials Studio. San Diego: Dassault Systèmes 2018.
58. BIOVIA, D. S., CASTEP. San Diego: Dassault Systèmes 2018.
59. BIOVIA, D. S., Sorption. San Diego: Dassault Systèmes 2018.
60. BIOVIA, D. S., Forcite. San Diego: Dassault Systèmes 2018.
61. Trickett, C.A., K.J. Gagnon, S. Lee, F. Gandara, H.B. Burgi, and O.M. Yaghi, Definitive molecular level characterization of defects in UiO-66 crystals. Angew Chem Int Ed Engl, 2015. 54(38): p. 11162-7.
62. Butova, V.V., A.P. Budnyk, A.A. Guda, K.A. Lomachenko, A.L. Bugaev, A.V. Soldatov, S.M. Chavan, S. Øien-Ødegaard, U. Olsbye, K.P. Lillerud, C. Atzori, S. Bordiga, and C. Lamberti, Modulator Effect in UiO-66-NDC (1,4-Naphthalenedicarboxylic Acid) Synthesis and Comparison with UiO-67-NDC Isoreticular Metal–Organic Frameworks. Crystal Growth & Design, 2017. 17(10): p. 5422-5431.
63. Farmahini, A.H., A. Shahtalebi, H. Jobic, and S.K. Bhatia, Influence of Structural Heterogeneity on Diffusion of CH4 and CO2 in Silicon Carbide-Derived Nanoporous Carbon. The Journal of Physical Chemistry C, 2014. 118(22): p. 11784-11798.
64. Verploegh, R.J., S. Nair, and D.S. Sholl, Temperature and Loading-Dependent Diffusion of Light Hydrocarbons in ZIF-8 as Predicted Through Fully Flexible Molecular Simulations. Journal of the American Chemical Society, 2015. 137(50): p. 15760-71.
65. Clark, S.J., M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne, First principles methods using CASTEP. Zeitschrift Fuer Kristallographie, 2005. 220(5-6): p. 567-570.
66. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 1997. 78(7): p. 1396-1396.
67. Sun, H., COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds. The Journal of Physical Chemistry B, 1998. 102(38): p. 7338-7364.
68. Chen, L., F. Cao, and H. Sun, Ab initio study of the π-π interactions between CO2 and benzene, pyridine, and pyrrole. International Journal of Quantum Chemistry, 2013. 113(20): p. 2261-2266.
69. Golzar, K., H. Modarress, and S. Amjad-Iranagh, Effect of pristine and functionalized single- and multi-walled carbon nanotubes on CO2 separation of mixed matrix membranes based on polymers of intrinsic microporosity (PIM-1): a molecular dynamics simulation study. Journal of Molecular Modeling, 2017. 23(9): p. 266.
70. Lock, S.S.M., K.K. Lau, A.M. Shariff, Y.F. Yeong, and M.A. Bustam, Thickness dependent penetrant gas transport properties and separation performance within ultrathin polysulfone membrane: Insights from atomistic molecular simulation. Journal of Polymer Science Part B-Polymer Physics, 2018. 56(2): p. 131-158.
71. Xu, H., W. Chu, X. Huang, W. Sun, C. Jiang, and Z. Liu, CO2 adsorption-assisted CH4 desorption on carbon models of coal surface: A DFT study. Applied Surface Science, 2016. 375: p. 196-206.
72. Ozcan, A., C. Perego, M. Salvalaglio, M. Parrinello, and O. Yazaydin, Concentration gradient driven molecular dynamics: a new method for simulations of membrane permeation and separation. Chemical Science, 2017. 8(5): p. 3858-3865.
指導教授 張博凱(Bor Kae Chang) 審核日期 2019-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明