博碩士論文 106324009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.119.104.238
姓名 孫成浩(Cheng-Hao Sun)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構
(3D-confinement Tailored Hierarchical Structures through a Combination of Self-assembly and Micro-emulsion.)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為
★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質
★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究
★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構★ 極性/非極性共溶劑退火法調控雙團鏈共聚物薄膜奈米微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在通過微乳化方法產生的三維侷限空間下,嵌段共聚物(BCP)
傾向於形成具有洋蔥狀奈米層狀結構的微球、具有軸向堆疊的奈米
層板結構的橢球和具有納奈米柱狀結構的盤狀粒子。這種多層級
(結構中具有結構)結構在許多領域具有潛在的應用,包括生物醫
學,能源,催化劑和光學裝置。微乳化方法是使用具有不同表面性
質的兩種不混溶溶劑,比如氯仿和水來製備嵌段共聚物微結構。在
此研究中,我們將PS-b-P4VP 溶解在氯仿中,然後加入大量含有界
面活性劑CTAB 的水。在CTAB 存在下,水溶液可將PS-b-P4VP/氯
仿溶液乳化,並在混合物中形成膠體微粒。除去氯仿和水後,PS-b-
P4VP 能自發地自組裝並在微粒中形成奈米結構。在三維侷限空間
下,PS-b-P4VP 自組裝產生了幾種結構內具有結構之形態,可以通
過控制共聚物分子量、溶劑性質以及嵌段共聚物的表面能來調控。
最終可獲得洋蔥狀、具凸-凹結構和具雙凸結構微粒或具有六邊形奈
米柱狀陣列的盤型微米粒子。而後,我們將多層級結構用作模板進
一步製造複製模板形態的碳和金屬材料並應用於氧還原反應。
摘要(英) Under 3D confinement generated through a micro-emulsion approach, block copolymer (BCP) tends to form micro spheres with onion-like nanodomains, ellipsoids with axially-stacked nanolamellae, and Oblate particles with nanocylinders. Such hierarchical (structure-within-structure) structures have potential applications in many fields, including biomedicine, energy, catalyst and optical devices. For the micro Emulsion approach, two immiscible solvents, chloroform and water, with different surface properties were used to produce BCP microstructures. PS-b-P4VP was dissolved in chloroform followed by the addition of a large amount of
water with surfactant CTAB. In the presence of CTAB, the solution of PS-b-P4VP/chloroform was emulsified to form colloidal microparicles in the mixture after adding water. Upon removal of chloroform and water, PS-b-P4VP spontaneously self-assembled to form nanodomains within the
microparicles. Under 3D confinement, self-assembly of PS-b-P4VP produced several structure-within-structure morphologies, which could by tailored by controls over molecular weight, solvent quality, as well as the surface energy of BCPs. As a result, onion-like, convex-concavo, and
convex-convex microparticles or oblate mciroparticles with hexagonal arrays of nanopores were obtained. The hierarchical structures were then used as templates to fabricate carbon and metal materials with replicated morphologies for oxygen reduction reactions.
關鍵字(中) ★ 三維侷限空間自組裝
★ 嵌段共聚物
★ 微乳化法
關鍵字(英) ★ 3D-confinement self-assembly
★ Block copolymer
★ Micro-emulsion method
論文目次 摘要 ............................................................................................................. i
Abstract ...................................................................................................... ii
目錄 ........................................................................................................... iii
圖目錄 ....................................................................................................... vi
表目錄 ..................................................................................................... xiii
第1 章 文獻回顧 ...................................................................................... 1
1-1 嵌段共聚物自組裝機制 ............................................................. 1
1-2 塊材系統與三維侷限系統之自組裝 ......................................... 3
1-3 嵌段共聚物奈微米粒子合成方法 ............................................. 6
1-4 碳化嵌段共聚物合成奈米碳材 ................................................. 8
1-5 共聚物微球作為模板混摻前驅物之機制 ............................... 10
1-6 氧還原反應 ............................................................................... 12
1-7 研究動機 ................................................................................... 16
第2 章 實驗方法 .................................................................................... 17
2-1 實驗材料 ................................................................................... 17
2-1-1 雙嵌段共聚物 ................................................................ 17
2-1-2 實驗用基材 .................................................................... 18
2-1-3 溶劑 ................................................................................ 18
2-1-4 相關藥品 ........................................................................ 18
2-2 樣品製備 ................................................................................... 19
2-2-1 基材清潔 ........................................................................ 19
2-2-2 製備嵌段共聚物微米粒子 ............................................ 19
2-2-3 以微米高分子粒子為碳源製備奈米碳材 ................... 20
2-2-4 以微米高分子粒子為模板製備白金-碳複合材料 ...... 20
2-3 實驗儀器 ................................................................................... 20
2-4 儀器分析 ................................................................................... 21
2-4-1 拉曼光譜儀 .................................................................... 21
2-4-2 掃描式電子顯微鏡 ........................................................ 21
2-4-3 穿透式電子顯微鏡 ........................................................ 22
2-4-4 X 光繞射分析 ................................................................. 22
2-4-5 氧還原活性 .................................................................... 23
第3 章 結果與討論 ................................................................................ 25
3-1 嵌段共聚物微米粒子之自組裝型態與結構探討 ................... 25
3-1-1 對稱型共聚物微米粒子之自組裝行為 ....................... 25
3-1-2 非對稱型共聚物微米粒子之自組裝行為 ................... 32
3-2 碳化嵌段共聚物微米粒子形成之奈米碳材及其形態、結構
探討 ................................................................................................... 34
3-2-1 碳化具洋蔥結構之微米粒子所得奈米碳材之型態與
結構........................................................................................... 34
3-2-2 碳化具六角圓柱結構之微米粒子所得奈米碳材之型
態與結構 .................................................................................. 37
3-3 以洋蔥狀嵌段共聚物微米粒子為模板合成之白金觸媒材料
之結構 ............................................................................................... 39
3-3-1 以洋蔥狀微米粒子製備之奈米白金碗狀粒子 ........... 40
3-3-2 奈米白金碗狀粒子之尺寸與模板分子量的關係 ....... 43
3-3-3 燒結溫度對奈米白金碗狀粒子結構之影響 ............... 44
3-4 奈米碳材及白金觸媒的氧還原活性探討 ............................... 46
3-4-1 白金觸媒之氧還原活性 ................................................ 46
3-4-2 奈米碳材之氧還原活性 ................................................ 53
第4 章 結論............................................................................................. 59
參考資料 ................................................................................................... 61
參考文獻 1. P. Alexandridis, J. F. Holzwarth. “Block Copolymers”, Curr. Opin. Colloid Interface Sci. 2000,5, 312.
2. F. S. Bates, M. A. Hillmyer, T. P. Lodge, C. M. Bates, K. T. Delaney, G. H. Fredrickson. “Multiblock Polymers: Panacea or Pandora′s Box”, Science, 2012, 336, 434.
3. Allegra L. Liberman‐Martin, Crystal K. Chu, Robert H. Grubbs “Application of Bottlebrush Block Copolymers as Photonic Crystals” Macromol. Rapid Commun. 2017, 38, 1700058
4. S.P. Hsu, Y.S. Sun. “Controls over Microdomain in Diblock Copolymer Thin Films by Polar/Nonpolar Cosolvent Annealing”, 國立中央大學化學工程研究所碩士論文 (2010).
5. L. Leibler. “Theory of Microphase Separation in Block Copolymers”, Macromolecules 1980, 13, 1062.
6. M. W. Matsen, F. S. Bates. “Unifying Weak- and Strong-Segregation Block Copolymer Theories”, Macromolecules 1996, 29, 1091.
7. A. K. Khandpur, S. Forster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, K. Mortennsen. “Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition”, Macromolecules 1995, 28, 8796.
8. H. Hu, M. Gopinadhan, C. O.Osuji. “Directed Self-assembly of Block Copolymers: a Tutorial Review of Strategies for Enabling nanotechnology with soft matter”, Soft Matter 2014,10, 3867-3889
9. T. Higuchi, “Microphase-separated structures under spherical 3D confinement” Polymer Journal 2017, 49, pages 467–475.
10. I. Wyman, G. Njikang, G. Liu, “When Emulsification Meets Self-assembly: The Role of Emulsification in Directing Block Copolymer Assembly”, Prog. Polym. Sci. 2011, 36, 1152.
11. R. Deng, J. Wang, R. Liang, S. Liu, J. Zhu, “Self-assembly of Block Copolymers Under 3D Confinement: Toward Nanostructured Particles”, Nanosci. Nanotechnol. Asia 2012, 2, 163.
12. M. P. Kim, G.-R. Yi, “Nanostructured Colloidal Particles by Confined Self-assembly of Block Copolymers in Evaporative Droplets”, Front. Mater. 2015, 2, 1.
13. Z. Jin, H. Fan, “Self-assembly of Nanostructured Block Copolymer Nanoparticles”, Soft Matter 2014, 10, 9212
14. H. Yabu, T. Higuchi, H. Jinnai, “Frustrated Phases: Polymeric Self-assemblies in A 3D Confinement”, Soft Matter 2014, 10, 2919.
15. A.-C. Shi, B. Li, “Self-assembly of Diblock Copolymers under Confinement”, Soft Matter 2013, 9, 1398.
16. R. H. Staff, I. Lieberwirth, K. Landfester, D. Crespy, “Preparation and Characterization of Anisotropic Submicron Particles from Semicrystalline Polymers”, Macromol. Chem. Phys. 2012, 213, 351.
17. T. Ding, Z. F. Liu, K. Song, K. Clays, C. H. Tung, “Photonic Crystals of Oblate Spheroids by Blown Film Extrusion of Prefabricated Colloidal Crystals”, Langmuir 2009,25, 10218.
18. T. Chen, Z. Zhang, S. C. Glotzer,“ A Precise Packing Sequence for Self-assembled Convex Structures”, Proc. Natl. Acad. Sci. USA 2007,104, 717.
19. S. J. Jeon, G.-R. Yi, C. M. Koo, S. M. Yang, “Nanostructures Inside Colloidal Particles of Block Copolymer/Homopolymer Blends”, Macromolecules 2007, 40, 8430.
20. M. M. Fryd, T. G. Mason, “Time-Dependent Nanoemulsion Droplet Size Reduction by Evaporative Ripening”, J. Phys. Chem. Lett. 2010, 1, 3349.
21. D. Klinger, C. X. Wang, L. A. Connal, D. J. Audus, S. G. Jang,S. Kraemer, K. L. Killops, G. H. Fredrickson, E. J. Kramer,C. J. Hawker, “A Facile Synthesis of Dynamic, Shape‐Changing Polymer Particles” Angew. Chem., Int. Ed. 2014, 53, 7018.
22. S. J. Jeon, G.-R. Yi, S. M. Yang, “Cooperative Assembly of Block Copolymers with Deformable Interfaces: Toward Nanostructured Particles” Adv. Mater. 2008, 20, 4103.
23. K. H. Ku, J. M. Shin, H. Yun, G.-R. Yi, S. G. Jang, B. J. Kim, “Multidimensional Design of Anisotropic Polymer Particles from Solvent-Evaporative Emulsion” Adv. Funct. Mater. 2018, 1802961
24. H.Yabu, “Self-organized Precipitation: An Emerging Method for Preparation of Unique Polymer Particles” ,Polymer Journal 2013 45, 261–268
25. H.Yabu . “Creation of Functional and Structured Polymer Particles by Self-Organized Precipitation (SORP)”, Bull. Chem. Soc. 2012 Jpn 85, 265–274.
26. N. Yan, Y. Zhu, W. Jiang,“ Recent Grogress in the Self-assembly of Block Copolymers Confined in Emulsion Droplets”, Chem. Commun. 2018, 54, 13183—13195
27. Y. Leng, K. Sun, X. Chen, W. Li, “Suspension Arrays Based on Nanoparticle-encoded Microspheres for High-throughput Multiplexed Detection”, Chem. Soc. Rev. 2015, 44, 5552—5595
28. Tomasz Kowalewski, Nicolay V. Tsarevsky, and Krzysztof Matyjaszewski. “Nanostructured Carbon Arrays from Block Copolymers of Polyacrylonitrile”, Journal of the American Society 2002, 124, 10632-10633.
29. M. Zhong, E. K. Kim, P. McGann, S. E. Chun, Jay F. Whiteacre, M. Jaroniec, K. Matyjaszewski, T. Kowalewski. “Electrochemically Active Nitrogen-Enriched Nanocarbons with Well-Defined Morphology Synthesized by Pyrolysis of Self-Assembled Block Copolymer”, Journal of the American Society, 2012, 134, 14846
30. M. Zhong, S. Jiang, Y. Tang, E. Gottlieb, E. K. Kim, A. Star, K. Matyjaszewski, T. Kowalewski. “Block copolymer-templated Nitrogen-enriched Nanocarbons with Morphology-dependent Electrocatalytic Activity for Oxygen Reduction”, Chem. Sci. 2014, 5, 3315.
31. M. Templin, A. Franck, A. Du Chesne, H. Leist, Y. Zhang, R. Ulrich,V. Schädler, U. Wiesner, “Organically modified aluminosilicate mesostructures from block copolymer phases”, Science 1997, 278, 1795
32. M. V. Seregina, L. M. Bronstein, O. A. Platonova, D. M. Chernyshov, P. M. Valetsky, J. Hartmann, E. Wenz, M. Antonietti, “Preparation of Noble-Metal Colloids in Block Copolymer Micelles and Their Catalytic Properties in Hydrogenation”, Chem. Mater. 1997, 9, 923.
33. O. A. Platonova, L. M. Bronstein, S. P. Solodovnikov, I. M. Yanovskaya, E. S. Obolonkova, P. M. Valetsky, E. Wenz, M. Antonietti, “Cobalt Nanoparticles in Block Copolymer Micelles: Preparation and Properties”, Colloid Polym. Sci. 1997, 275, 426.
34. M. R. Bockstaller, R. A. Mickiewicz, E. L. Thomas, “Block Copolymer Nanocomposites: Perspectives for Tailored Functional Materials”, Adv. Mater. 2005, 17, 1331.
35. M. R. Bockstaller, Y. Lapetnikov, S. Margel, E. L. Thomas, “Size-Selective Organization of Enthalpic Compatibilized Nanocrystals in Ternary Block Copolymer/Particle Mixtures”, J. Am. Chem. Soc. 2003, 125, 5276.
36. J. J. Chiu, B. J. Kim, E. J. Kramer, D. J. Pine, “Control of Nanoparticle Location in Block Copolymers”, J. Am. Chem. Soc. 2005, 127, 5036.
37. B. J. Kim, J. Bang, C. J. Hawker, E. J. Kramer, “Effect of Areal Chain Density on the Location of Polymer-Modified Gold Nanoparticles in a Block Copolymer Template Macromolecules”, 2006, 39, 4108.
38. B. J. Kim, G. H. Fredrickson, C. J. Hawker, E. J. Kramer, “Nanoparticle Surfactants as a Route to Bicontinuous Block Copolymer Morphologies”, Langmuir 2007, 23, 7804.
39. L. A. Connal, N. A. Lynd, M. J. Robb, K. A. See, S. G. Jang, J. M. Spruell, C. J. Hawker, “Mesostructured Block Copolymer Nanoparticles: Versatile Templates for Hybrid Inorganic/Organic Nanostructures”, Chem. Mater. 2012, 24, 4036−4042.
40. M. Liu, R. Zhang,;W. Chen, “Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Synthesis, Properties, and Applications”, Chemical Reviews 2014, 114, 5117-5160.
41. E. Yeager, “Electrocatalysts for O2 reduction.”, Electrochimica Acta 1984, 29, 1527-1537.
42. K. Gong,;F. Du, Z. Xia, M . Durstock,; L. Dai, “Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction.”, Science 2009, 323, 760-764.
43. L. Yang, S. Jiang, Y. Zhao, L. Zhu., S. Chen,; X. Wang, Q. Wu,;J. Ma, Y. Ma, Z.Hu, “Boron-Doped Carbon Nanotubes as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction.”, Angewandte Chemie 2011, 123, 7270-7273.
44. L. Qu, Y. Liu, J.-B. Baek, L. Dai, “Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells.”, ACS Nano 2010, 4, 1321-1326.
45. Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. A. Chen,; S. Huang, “Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction.”, ACS Nano 2012, 6, 205-211.
46. S. Wang , E. Iyyamperumal , A. Roy, Y. Xue, D. Yu, L. Dai, “Vertically Aligned BCN Nanotubes as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction: A Synergetic Effect by Co-Doping with Boron and Nitrogen.”, Angewandte Chemie International Edition 2011, 50, 11756-11760.
47. A. Rahikkala, A. J. Soininen, J. Ruokolainen, R. Mezzenga, J. Raula, E. I. Kauppinena, “Self-assembly of PS-b-P4VP Block Copolymers of Varying Architectures in Aerosol Nanospheres.” Soft Matter 2013, 9, 1492–1499
48. S.-S. Kim, Y.-R Kim, T. D. Chung, B.-H. Sohn, “Tunable Decoration of Reduced Graphene Oxide with Au Nanoparticles for the Oxygen Reduction Reaction.” Advanced Functional Materials 2014, 24, 2764-2771.
49. E. L. Rowe, “Effect of Emulsifier Concentration and Type on the Particle Size Distribution of Emulsions.” Journal of Pharmaceutical Sciences 1965, 2, 54.
50. J. Xu, Y. Yang, K. Wang,†J. Li, H. Zhou,‡ X. Xie, J. Zhu, “Additives Induced Structural Transformation of ABC Triblock Copolymer Particles” Langmuir 2015, 31, 10975−10982
51. G. Quintieri, M. Saccone, M. Spengler , M. Giese, A. H. Gröschel, “Supramolecular Modification of ABC Triblock Terpolymers in Confinement Assembly.“, Nanomaterials 2018, 8, 1029
52. W.H. Huang, Y.S. Sun “團鏈共聚物自組裝、石墨化及金屬碳合金材料之製備”, 國立中央大學化學工程研究所碩士論文2015.
53. G.Y. Liou, Y.S. Sun. “Tailoring Nanostructure of Diblock Copolymer by Photochemistry and Its Application in Spatial Control of Ag and Ag@Au nanoparticles”, 國立中央大學化學工程研究所博士論文 2014.
54. D. T. Gentekos, J. Jia, E. S. Tirado, K. P. Barteau, D.-M. Smilgies, R. A. DiStasio Jr., B. P. Fors, “Exploiting Molecular Weight Distribution Shape to Tune Domain Spacing in Block Copolymer Thin Films.”, J. Am. Chem. Soc.2018, 14013, 4639-4648
55. Y. Li, B. P. Bastakoti, V. Malgras, C. Li, J. Tang, J. H. Kim, and Y. Yamauchi, “Polymeric Micelle Assembly for the Smart Synthesis of Mesoporous Platinum Nanospheres with Tunable Pore Sizes”, Angew. Chem. Int. Ed. 2015, 54, 11073 –11077
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明