博碩士論文 106324031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.207.240.230
姓名 沈筱容(Hsiao-Jung Shen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體
(Stearylated Indolicidin as a nonviral vector for plasmid DNA delivery)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 電場對於複合奈米絲進行原位基因傳送之影響★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送
★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維★ 利用寡聚精胺酸促進去氧寡核苷酸輸送
★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送
★ Indolicidin之色胺酸殘基對於轉染效率的影響★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響
★ 搭建可提供電刺激與機械刺激之生物反應器★ 開發促進傷口癒合之複合敷料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 細胞穿透肽(CPP)已經被廣泛研究作為用於基因傳送的非病毒載體。 Indolicidin(IL)是一種有潛力的細胞穿透肽,其富含陽離子精氨酸、賴氨酸和疏水性的色氨酸。雖然IL已被用作小分子核苷酸的載體,例如siRNA和寡脫氧核苷酸(ODN)的傳送,但它不能單獨遞送大分子質體DNA(pDNA)。雙親性分子其親疏水段鍊可自組裝成膠束或脂質體等微結構,藉此與細胞膜融合達到藥物輸送的效果。因此,本研究將IL的N或C末端進行硬脂基化,並分別將命名為sIL和ILs。
DLS分析硬脂基化胜肽的粒徑及電位,證實sIL和ILs都可進行自組裝,推測結構分別為多層囊泡及反膠束的形式。和DNA複合後分析其裝載率,證實IL的硬脂基化對其與DNA複合的影響不大,而競爭實驗結果顯示自組裝的微結構可以增加複合物的穩定性。由於胜肽載體的輸送取決於其膜擾動的能力,所以我們以鈣黃綠素滲漏實驗進行膜擾動的評估,可以發現N端硬脂化的sIL不利於與膜作用,相較之下,ILs的膜擾動能力與IL相近。當這些胜肽直接用於遞送質粒DNA,從雷射共聚焦顯微鏡和流式細胞儀的結果來看,只有ILs可以促進細胞攝取。轉染結果表明ILs成功轉染HEK-293T細胞,而sIL和IL幾乎沒有轉染。推測sIL的擾膜能力低,且其與DNA的複合物過大,因此不能被宿主細胞攝取。雖然IL可以直接與DNA複合形成合適的大小並且具有優異的包覆率,但穩定性不佳,因此推斷轉染時IL本身易與細胞膜直接吸附而導致DNA在胞外被釋放。相較之下,ILs與DNA複合時,其硬脂基不但可誘使胜肽以其N端與細胞膜接觸達到膜擾動,其自組裝的反膠束結構可增加複合物的穩定性,因此達到促進DNA輸送的目的。
摘要(英) Cell-penetrating peptides (CPP) have been investigated as a non-viral vector for gene delivery. Indolicidin (IL) is a potential cell-penetrating peptide rich in cationic arginine/lysine and hydrophobic tryptophan. Although IL has been applied as a carrier for small nucleotides such as siRNA and oligodeoxynucleotide, it cannot solely deliver huge plasmid DNA (pDNA). Amphiphilic molecules can self-assemble as micelles or liposomes due to their hydrophilic/hydrophobic domains to promote their fusion with cell membranes for drug delivery. Therefore, we modified IL by stearylating its N and C terminals, and denoted them as sIL and ILs, respectively. The DLS analysis was applied to examine the size and surface charges of these stearylated peptides, suggesting that sIL and ILs were capable of self-assembling as multilamellar vesicles (MLVs) and inverted micelles, respectively. The DNA loading examination demonstrated that stearylation of peptides did not hinder their complexation with DNA. The competition experiments showed that self-assembled structure of stearylated peptides increased the stability of complexes. Because delivery efficiencies of CPPs highly depend on their interaction with cell membranes, calcein leakage was applied to evaluation their membrane perturbation ability. In contrast to sIL which demonstrated poor leakage due to its N terminal-stearylation, membrane perturbation ability of ILs was similr to that of unmodified IL. When these peptides were applied for gene delivery, the results of confocal microscopy and flow cytometry showed that only ILs promoted DNA internalization. The transfection results indicated that ILs successfully transfected HEK-293T cells, whereas sIL and IL demonstrated almost no transfection. Due to poor membrane perturbation ability and huge sizes of sIL/DNA complexes, sIL cannot promote DNA transportation. Although IL can directly complex with DNA with appropriate size and good loading efficiency, these complexes is not stable enough. Therefore, IL may adsorb to cell membrane during transfection to release DNA extracellularly. In contrast, ILs may force its N terminus to interact with cell membrane to promote perturbation. The self-assembly of inverted micelles may also stabilize ILs/DNA complexes. These properties explain the improvement effects of ILs on DNA delivery efficiency.
關鍵字(中) ★ 硬脂基化
★ 細胞穿膜胜肽
★ 基因傳送
★ 質體DNA
★ 非病毒載體
關鍵字(英)
論文目次 摘要 I
Abstract III
致謝 V
目錄 VII
圖目錄 XI
表目錄 XIII
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
第二章 文獻回顧 3
2-1 基因治療 3
2-2 基因載體 6
2-2-1 脂質體 7
2-2-1-1 脂質體轉染機制 9
2-2-1-2 脂質體用於轉染上的發展 11
2-2-2 胜肽 13
2-2-2-1 細胞穿膜胜肽(Cell Penetrating Peptides, CPPs) 13
2-2-2-2 胜肽轉染機制 15
2-2-2-3 胜肽的改質與應用 16
2-2-2-4 Indolicidin 19
2-2-2-5 Indolicidin的改質與應用 21
第三章 實驗藥品、儀器與方法 22
3-1 實驗材料 22
3-1-1 質體DNA 22
3-1-2 胜肽 23
3-1-3 細胞與培養用藥 23
3-1-4 分析藥品 23
3-2 實驗儀器 25
3-3 實驗方法 27
3-3-1 溶液配置 27
3-3-2 質體DNA純化 31
3-3-3 HEK293T細胞培養 32
3-3-4 peptide/DNA奈米粒子複合物製備 35
3-3-5 粒徑大小與表面電位 35
3-3-6 包覆率 36
3-3-6-1 螢光標定法 36
3-3-6-2 電泳膠體 36
3-3-6-3 複合物穩定性Heparin競爭實驗 37
3-3-7 Calcein染劑滲漏實驗 38
3-3-8 細胞存活率 39
3-3-9 轉染效率分析 40
3-3-9-1 雷射共軛焦顯微鏡(Confocal Microscopy) 40
3-3-9-2 流式細胞儀 41
3-3-9-3 轉染與ONPG分析 42
第四章 結果與討論 44
4-1 奈米粒子物性鑑定 44
4-1-1 表面電位 44
4-1-2 粒徑大小 46
4-2 胜肽之包覆效果 50
4-2-1 電泳 50
4-2-2 螢光標定法 53
4-2-3 Heparin競爭實驗 54
4-3 生物適合性 56
4-3-1 Calcein染劑滲漏實驗 56
4-3-2 細胞毒性 58
4-4 轉染機制探討 61
4-4-1 雷射共軛焦顯微鏡探討細胞攝取 61
4-4-2 流式細胞儀探討細胞攝取 62
4-4-3 轉染效率 64
第五章 結論 66
參考文獻 68
參考文獻 1. Feng, L.R. and Maguire-Zeiss, K.A., Gene Therapy in Parkinson’s Disease. Central Nervous System Drugs, 2010. 24(3): p. 177-192.
2. Ni, Y. and Jiang, C., Identification of potential target genes for ankylosing spondylitis treatment. Medicine, 2018. 97(8): p. e9760.
3. Ji, W., Sun, B., and Su, C., Targeting microRNAs in cancer gene therapy. Genes, 2017. 8(1): p. 21.
4. Wiethoff, C.M. and Middaugh, C.R., Barriers to Nonviral Gene Delivery. Journal of Pharmaceutical Sciences, 2003. 92(2): p. 203-217.
5. Futaki, S., Ohashi, W., Suzuki, T., Niwa, M., Tanaka, S., Ueda, K., Harashima, H., and Sugiura, Y., Stearylated arginine-rich peptides: a new class of transfection systems. Bioconjug Chemistry, 2001. 12(6): p. 1005-1011.
6. Nakase, I., Akita, H., Kogure, K., Graslund, A., Langel, U., Harashima, H., and Futaki, S., Efficient intracellular delivery of nucleic acid pharmaceuticals using cell-penetrating peptides. Accounts of Chemical Research, 2012. 45(7): p. 1132-1139.
7. Tayyab, M. Process Of Recombinant DNA Technology (Genetic Engineering). 2016; Available from: https://simplebiologyy.blogspot.com/2016/02/process-of-recombinant-dna-technology-genetic-engineering.html#comment-form.
8. Al-Dosari, M.S. and Gao, X., Nonviral gene delivery: principle, limitations, and recent progress. The American Association of Pharmaceutical Scientists journal, 2009. 11(4): p. 671-681.
9. Liu, F. and Huang, L., A Syringe Electrode Device for Simultaneous Injection of DNA and Electrotransfer. Molecular Therapy, 2002. 5(3): p. 323-328.
10. Song, Y., Hahn, T., Thompson, I.P., Mason, T.J., Preston, G.M., Li, G., Paniwnyk, L., and Huang, W.E., Ultrasound-mediated DNA transfer for bacteria. Nucleic Acids Research, 2007. 35(19): p. e129.
11. Uchida, M., Natsume, H., Kobayashi, D., Sugibayashi, K., and Morimoto, Y., Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin-loaded poly-L-lactic acid microspheres using a Helios gun system. Biological and Pharmaceutical Bulletin, 2002. 25(5): p. 690-693.
12. Tseng, W.C. and Jong, C.M., Improved stability of polycationic vector by dextran-grafted branched polyethylenimine. Biomacromolecules, 2003. 4(5): p. 1277-1284.
13. Xun, M.M., Xiao, Y.P., Zhang, J., Liu, Y.H., Peng, Q., Guo, Q., and Yu, X.Q., Low molecular weight PEI-based polycationic gene vectors via Michael addition polymerization with improved serum-tolerance. Polymer, 2015. 65: p. 45-54.
14. Israelachvili, J.N., Mitchell, D.J., and Ninham, B.W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1976. 72(0): p. 1525-1568.
15. Gonzalez-Perez, A. and Persson, K.M., Bioinspired Materials for Water Purification. Materials, 2016. 9(6): p. 447.
16. Yadav D, S.K., Pandey D, Dutta RK, Liposomes for Drug Delivery. Journal of Biotechnology and Biomaterials, 2017. 7(4): p. 1000276.
17. Raffa, V., Vittorio, O., Riggio, C., and Cuschieri, A., Progress in nanotechnology for healthcare. Minimally Invasive Therapy & Allied Technologies, 2010. 19(3): p. 127-135.
18. Neelam Sharma, S.V., Current and future prospective of liposomes as drug delivery vehicles for the effective treatment of cancer. International Journal of Green Pharmacy, 2017. 11(3): p. 377-384.
19. Maestrelli, F., Capasso, G., Gonzalez-Rodriguez, M.L., Rabasco, A.M., Ghelardini, C., and Mura, P., Effect of preparation technique on the properties and in vivo efficacy of benzocaine-loaded ethosomes. Journal of Liposome Research, 2009. 19(4): p. 253-260.
20. Sezer, A.D., Akbuğa, J., and Baş, A.L., In Vitro Evaluation of Enrofloxacin-Loaded MLV Liposomes. Drug Delivery, 2007. 14(1): p. 47-53.
21. Karami, N., Moghimipour, E., and Salimi, A., Liposomes as a novel drug delivery system: fundamental and pharmaceutical application. Asian Journal of Pharmaceutics, 2018. 12(1): p. 31-41.
22. Khoee, S. and Yaghoobian, M., Chapter 6: Niosomes: a novel approach in modern drug delivery systems, in Nanostructures for Drug Delivery-Micro and Nano Technologies. 2017, Elsevier. p. 207-237.
23. Sanarova, E., Lantsova, A., Oborotova, N., Orlova, O., Polozkova, A., Dmitrieva, M., and Nikolaeva, N., Liposome Drug Delivery. Journal of Pharmaceutical Sciences and Research, 2019. 11(3): p. 1148-1155.
24. Schwendener, R.A., Liposomes in biology and medicine. Advances in Experimental Medicine and Biology, 2007. 620: p. 117-128.
25. Resina, S., Prevot, P., and Thierry, A.R., Physico-Chemical Characteristics of Lipoplexes Influence Cell Uptake Mechanisms and Transfection Efficacy. PLOS ONE, 2009. 4(6): p. e6058.
26. Cagdas, M., Sezer, A. D., & Bucak, S., Liposomes as Potential Drug Carrier Systems for Drug Delivery, in Application of Nanotechnology in Drug Delivery. 2014, IntechOpen.
27. Agarwal, R., Iezhitsa, I., Agarwal, P., Abdul Nasir, N.A., Razali, N., Alyautdin, R., and Ismail, N.M., Liposomes in topical ophthalmic drug delivery: an update. Drug Delivery, 2016. 23(4): p. 1075-1091.
28. Bangham, A.D., Standish, M.M., and Watkins, J.C., Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of Molecular Biology, 1965. 13(1): p. 238-252.
29. Gregoriadis, G., Liposome research in drug delivery: The early days. Journal of Drug Targeting, 2008. 16(7-8): p. 520-524.
30. Porteous, D.J., Dorin, J.R., McLachlan, G., Davidson-Smith, H., Davidson, H., Stevenson, B.J., Carothers, A.D., Wallace, W.A., Moralee, S., Hoenes, C., Kallmeyer, G., Michaelis, U., Naujoks, K., Ho, L.P., Samways, J.M., Imrie, M., Greening, A.P., and Innes, J.A., Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Therapy, 1997. 4(3): p. 210-218.
31. Wang, A.Z., Langer, R., and Farokhzad, O.C., Nanoparticle delivery of cancer drugs. The Annual Review of Medicine, 2012. 63: p. 185-198.
32. Barber, R.F. and Shek, P.N., Tear-induced release of liposome-entrapped agents. International Journal of Pharmaceutics, 1990. 60(3): p. 219-227.
33. Barber, R.F. and Shek, P.N., Liposomes and tear fluid. I. Release of vesicle-entrapped carboxyfluorescein. Biochimica et Biophysica Acta, 1986. 879(2): p. 157-163.
34. Li, N., Zhuang, C., Wang, M., Sun, X., Nie, S., and Pan, W., Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. International Journal of Pharmaceutics, 2009. 379(1): p. 131-138.
35. Tan, P.H., Manunta, M., Ardjomand, N., Xue, S.A., Larkin, D.F., Haskard, D.O., Taylor, K.M., and George, A.J., Antibody targeted gene transfer to endothelium. The Journal of Gene Medicine, 2003. 5(4): p. 311-323.
36. Kim, B.K., Hwang, G.B., Seu, Y.B., Choi, J.S., Jin, K.S., and Doh, K.O., DOTAP/DOPE ratio and cell type determine transfection efficiency with DOTAP-liposomes. Biochimica et Biophysica Acta, 2015. 1848(10, Part A): p. 1996-2001.
37. Mochizuki, S., Kanegae, N., Nishina, K., Kamikawa, Y., Koiwai, K., Masunaga, H., and Sakurai, K., The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochimica et Biophysica Acta, 2013. 1828(2): p. 412-418.
38. Trabulo, S., Cardoso, A.L., Mano, M., and De Lima, M.C.P., Cell-Penetrating Peptides-Mechanisms of Cellular Uptake and Generation of Delivery Systems. Pharmaceuticals (Basel, Switzerland), 2010. 3(4): p. 961-993.
39. Lin, A.J., Slack, N.L., Ahmad, A., George, C.X., Samuel, C.E., and Safinya, C.R., Three-Dimensional Imaging of Lipid Gene-Carriers: Membrane Charge Density Controls Universal Transfection Behavior in Lamellar Cationic Liposome-DNA Complexes. Biophysical Journal, 2003. 84(5): p. 3307-3316.
40. Zauner, W., Ogris, M., and Wagner, E., Polylysine-based transfection systems utilizing receptor-mediated delivery. Advanced Drug Delivery Reviews, 1998. 30(1-3): p. 97-113.
41. Rothbard, J.B., Kreider, E., VanDeusen, C.L., Wright, L., Wylie, B.L., and Wender, P.A., Arginine-rich molecular transporters for drug delivery: role of backbone spacing in cellular uptake. Journal of medicinal chemistry, 2002. 45(17): p. 3612-3618.
42. Vumma, R., Johansson, J., Lewander, T., and Venizelos, N., Tryptophan transport in human fibroblast cells-a functional characterization. International Journal of Tryptophan Research, 2011. 4: p. 19-27.
43. Lindgren, M., Hallbrink, M., Prochiantz, A., and Langel, U., Cell-penetrating peptides. Trends in Pharmacological Sciences, 2000. 21(3): p. 99-103.
44. Shokolenko, I.N., Alexeyev, M.F., LeDoux, S.P., and Wilson, G.L., TAT-mediated protein transduction and targeted delivery of fusion proteins into mitochondria of breast cancer cells. DNA Repair (Amst), 2005. 4(4): p. 511-518.
45. Frankel, A.D. and Pabo, C.O., Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988. 55(6): p. 1189-1193.
46. Green, M. and Loewenstein, P.M., Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell, 1988. 55(6): p. 1179-1188.
47. Guidotti, G., Brambilla, L., and Rossi, D., Cell-Penetrating Peptides: From Basic Research to Clinics. Trends in Pharmacological Sciences, 2017. 38(4): p. 406-424.
48. Derossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G., and Prochiantz, A., Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. Journal of Biological Chemistry, 1996. 271(30): p. 18188-18193.
49. Lee, S.H., Castagner, B., and Leroux, J.-C., Is there a future for cell-penetrating peptides in oligonucleotide delivery? European Journal of Pharmaceutics and Biopharmaceutics, 2013. 85(1): p. 5-11.
50. Salomone, F., Cardarelli, F., Di Luca, M., Boccardi, C., Nifosi, R., Bardi, G., Di Bari, L., Serresi, M., and Beltram, F., A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape. Journal of Controlled Release, 2012. 163(3): p. 293-303.
51. Fei, L., Ren, L., Zaro, J.L., and Shen, W.C., The influence of net charge and charge distribution on cellular uptake and cytosolic localization of arginine-rich peptides. Journal of Drug Targeting, 2011. 19(8): p. 675-680.
52. Abes, S., Turner, J.J., Ivanova, G.D., Owen, D., Williams, D., Arzumanov, A., Clair, P., Gait, M.J., and Lebleu, B., Efficient splicing correction by PNA conjugation to an R6-Penetratin delivery peptide. Nucleic Acids Research, 2007. 35(13): p. 4495-4502.
53. Crowet, J.-M., Lins, L., Deshayes, S., Divita, G., Morris, M., Brasseur, R., and Thomas, A., Modeling of non-covalent complexes of the cell-penetrating peptide CADY and its siRNA cargo. Biochimica et Biophysica Acta, 2013. 1828(2): p. 499-509.
54. Mo, R.H., Zaro, J.L., and Shen, W.-C., Comparison of cationic and amphipathic cell penetrating peptides for siRNA delivery and efficacy. Molecular Pharmaceutics, 2012. 9(2): p. 299-309.
55. Kwon, E.J., Liong, S., and Pun, S.H., A truncated HGP peptide sequence that retains endosomolytic activity and improves gene delivery efficiencies. Molecular Pharmaceutics, 2010. 7(4): p. 1260-1265.
56. Angeles-Boza, A.M., Erazo-Oliveras, A., Lee, Y.J., and Pellois, J.P., Generation of endosomolytic reagents by branching of cell-penetrating peptides: tools for the delivery of bioactive compounds to live cells in cis or trans. Bioconjugate Chemistry, 2010. 21(12): p. 2164-2167.
57. Chugh, A., Amundsen, E., and Eudes, F., Translocation of cell-penetrating peptides and delivery of their cargoes in triticale microspores. Plant Cell Reports, 2009. 28(5): p. 801-810.
58. Breslow, R., Belvedere, S., Gershell, L., and Leung, D., The chelate effect in binding, catalysis, and chemotherapy. Pure and Applied Chemistry, 2000. 72(3): p. 333-342.
59. Amand, H.L., Norden, B., and Fant, K., Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation. Biochemical and Biophysical Research Communications, 2012. 418(3): p. 469-474.
60. McKenzie, D.L., Kwok, K.Y., and Rice, K.G., A potent new class of reductively activated peptide gene delivery agents. Journal of Biological Chemistry, 2000. 275(14): p. 9970-9977.
61. Khalil, I.A., Futaki, S., Niwa, M., Baba, Y., Kaji, N., Kamiya, H., and Harashima, H., Mechanism of improved gene transfer by the N-terminal stearylation of octaarginine: enhanced cellular association by hydrophobic core formation. Gene Therapy, 2004. 11(7): p. 636-644.
62. Lehto, T., Abes, R., Oskolkov, N., Suhorutsenko, J., Copolovici, D.M., Mager, I., Viola, J.R., Simonson, O.E., Ezzat, K., Guterstam, P., Eriste, E., Smith, C.I., Lebleu, B., Samir El, A., and Langel, U., Delivery of nucleic acids with a stearylated (RxR)4 peptide using a non-covalent co-incubation strategy. Journal of Controlled Release, 2010. 141(1): p. 42-51.
63. Mae, M., El Andaloussi, S., Lundin, P., Oskolkov, N., Johansson, H.J., Guterstam, P., and Langel, U., A stearylated CPP for delivery of splice correcting oligonucleotides using a non-covalent co-incubation strategy. Journal of Controlled Release, 2009. 134(3): p. 221-227.
64. Selsted, M.E., Novotny, M.J., Morris, W.L., Tang, Y.Q., Smith, W., and Cullor, J.S., Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. The Journal of Biological Chemistry, 1992. 267(7): p. 4292-4295.
65. Hu, W.W., Lin, Z.W., Ruaan, R.C., Chen, W.Y., Jin, S.L.C., and Chang, Y., A novel application of indolicidin for gene delivery. International Journal of Pharmaceutics, 2013. 456(2): p. 293-300.
66. Marchand, C., Krajewski, K., Lee, H.-F., Antony, S., Johnson, A.A., Amin, R., Roller, P., Kvaratskhelia, M., and Pommier, Y., Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Research, 2006. 34(18): p. 5157-5165.
67. 蔡秉錩, Indolicidin及其類似物之生物活性與直接穿膜特性. 國立中央大學化學工程與材料工程研究所碩士論文, 2012.
68. Shaw, J.E., Alattia, J.R., Verity, J.E., Prive, G.G., and Yip, C.M., Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. Journal of Structural Biology, 2006. 154(1): p. 42-58.
69. Hsu, J.C.Y. and Yip, C.M., Molecular Dynamics Simulations of Indolicidin Association with Model Lipid Bilayers. Biophysical Journal, 2007. 92(12): p. L100-L102.
70. Subbalakshmi, C., Krishnakumari, V., Sitaram, N., and Nagaraj, R., Interaction of indolicidin, a 13-residue peptide rich in tryptophan and proline and its analogues with model membranes. Journal of Biosciences, 1998. 23(1): p. 9-13.
71. Tsai, C.W., Lin, Z.W., Chang, W.F., Chen, Y.F., and Hu, W.W., Development of an indolicidin-derived peptide by reducing membrane perturbation to decrease cytotoxicity and maintain gene delivery ability. Colloids Surf B Biointerfaces, 2018. 165: p. 18-27.
72. Hu, W.W., Yeh, C.C., and Tsai, C.W., The conjugation of indolicidin to polyethylenimine for enhanced gene delivery with reduced cytotoxicity. Journal of Materials Chemistry B, 2018. 6(36): p. 5781-5794.
73. Hu, W.W., Huang, S.C., and Jin, S.L., A novel antimicrobial peptide-derived vehicle for oligodeoxynucleotide delivery to inhibit TNF-α expression. International Journal of Pharmaceutics, 2019. 558: p. 63-71.
74. Loh, X.J., Lee, T.C., Dou, Q., and Deen, G.R., Utilising inorganic nanocarriers for gene delivery. Biomaterials Science, 2016. 4(1): p. 70-86.
75. Kircheis, R., Wightman, L., and Wagner, E., Design and gene delivery activity of modified polyethylenimines. Advanced Drug Delivery Reviews, 2001. 53(3): p. 341-358.
76. Maherani, B., Arab-Tehrany, E., Kheirolomoom, A., Geny, D., and Linder, M., Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids. Biochimie, 2013. 95(11): p. 2018-2033.
77. Exelead. Liposomes and Lipid Nanoparticles as Delivery Vehicles for Personalized Medicine. 2018; Available from: https://www.exeleadbiopharma.com/articles/liposomes-and-lipid-nanoparticles-as-delivery-vehicles-for-personalized-medicine.
78. Glodde, M., Sirsi, S.R., and Lutz, G.J., Physiochemical properties of low and high molecular weight poly(ethylene glycol)-grafted poly(ethylene imine) copolymers and their complexes with oligonucleotides. Biomacromolecules, 2006. 7(1): p. 347-356.
79. Pinnapireddy, S.R., Duse, L., Strehlow, B., Schafer, J., and Bakowsky, U., Composite liposome-PEI/nucleic acid lipopolyplexes for safe and efficient gene delivery and gene knockdown. Colloids and Surfaces B: Biointerfaces, 2017. 158: p. 93-101.
80. Sun, C.S., Wang, C.Y., Chen, B.P., He, R.Y., Liu, G.C., Wang, C.H., Chen, W., Chern, Y., and Huang, J.J., The influence of pathological mutations and proline substitutions in TDP-43 glycine-rich peptides on its amyloid properties and cellular toxicity. PLOS ONE, 2014. 9(8): p. e103644.
81. 臧冠遇, 脂質組成成分對細胞膜物理性質與生物功能的影響. 國立中央大學化學工程與材料工程學系碩士論文, 2015.
82. Chernomordik, L., Non-bilayer lipids and biological fusion intermediates. Chemistry and Physics of Lipids, 1996. 81(2): p. 203-213.
指導教授 胡威文(Wei-Wen Hu) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明