博碩士論文 106324034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:34.238.248.103
姓名 丁昶介(Chang-Chieh Ting)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鈣鈦礦膜缺陷控制及製備高效率鈣鈦礦太陽能電池
(Perovskite Film Defect Control and Preparing High Efficiency Perovskite Solar Cells)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來鈣鈦礦太陽能電池發展迅速,但朝商業化仍有許多難題需克服,就鈣鈦礦材料而言,易受光照及濕氣影響,造成鈣鈦礦降解,其中鈣鈦礦膜內缺陷扮演重要的角色,因此如何製備低缺陷鈣鈦礦薄膜是本篇的重點,本篇一共分成兩部分討論。
第一部分為以旋轉塗佈製程製備低缺陷鈣鈦礦膜,探討延遲退火程序下對鈣鈦礦MAPbI3薄膜的形貌控制以及太陽能電池光電轉換效率表現。最佳延遲退火條件為在室溫下60分鐘。進一步針對碘化鉀及碘的摻雜影響,研究發現鉀離子能增加鈣鈦礦結晶性、吸收紅移、降低能隙以及填補鈣鈦礦間隙型缺陷,降低缺陷密度,最後將碘與溶液中碘離子反應產生三碘陰離子(I3-),改善鈣鈦礦深層缺陷,增加膜電導度以及載子遷移率。在最佳化探討後,鈣鈦礦太陽能電池最高效率達19.36 %。
第二部分為以控溫式刮刀塗佈製備混合界面活性劑之鈣鈦礦膜,將不同濃度的非離子型界面活性劑(Tween20與Tween60)加進鈣鈦礦前驅溶液中進行刮刀塗佈製程,探討鈣鈦礦結晶差異以及製備成鈣鈦礦太陽能電池的光伏性能表現。
摘要(英) In recent years, perovskite solar cells have developed rapidly, but there are still many problems to overcome in the commercialization. In terms of perovskite materials, they are susceptible to light and moisture, causing the degradation of perovskites, in which defects play an important role in perovskite films. How to prepare low-defect perovskite films is the focus of this article. This article will divided into two parts.
The first part is the preparation of low-defect perovskite films by spin coating process, discussing the morphology of perovskite MAPbI3 films and power conversion efficiency of solar cells under delayed annealing process. Optimize the best delay annealing condition for sixty minutes in room temperature. Then we focus on the effects after doping potassium iodide and iodine. Potassium ions can increase the crystallinity of perovskites, let absorption red shifts, reduce energy band gaps, occupy perovskite interstitial defects, and reduce defect density. The last part, iodine reacts with iodide ions in the solution to produce triiodide ions(I3-), which improves deep-level defects in perovskite films, increases electrical conductivity and carrier mobility. The champion efficiency reach 19.36 %.
The second part is the preparation of the mixed surfactant perovskite by doctor blade coating. Different concentrations of non-ionic surfactant Tween20 and Tween60 are added into the perovskite precursor solution for blade coating process. Discuss the difference in crystallization, compare the effects of two surfactants on blade coating on perovskite films and effort on performance of perovskite solar cells.
關鍵字(中) ★ 鈣鈦礦
★ 缺陷
關鍵字(英) ★ Perovskite
★ Defect
論文目次 第一章 緒論 1
1-1 前言 1
1-2 太陽能電池發展歷史及種類 3
1-2-1 無機太陽能電池 4
1-2-2 有機太陽能電池 5
1-3 文獻回顧 8
1-3-1 鈣鈦礦起源 8
1-3-2 鈣鈦礦太陽能電池組成結構及工作原理 8
1-3-3 鈣鈦礦太陽能電池演變 9
1-3-4 鈣鈦礦材料性質 10
1-3-5 鈣鈦礦材料演變 11
1-3-6 鈣鈦礦薄膜製程 18
1-3-7 鈣鈦礦缺陷改質 23
1-4 研究動機(一) 31
1-5 研究動機(二) 34
第二章 實驗方法 37
2-1 實驗藥品 37
2-2 實驗儀器 39
2-3 材料製備 41
2-3-1 二氧化鈦緻密層配製 41
2-3-2 二氧化鈦介孔層配製 41
2-3-3 鈣鈦礦溶液配製 41
2-3-4 摻碘化鉀鈣鈦礦溶液配製 41
2-3-5 部分三碘陰離子鈣鈦礦溶液配製 42
2-3-6 乳化劑混和鈣鈦礦溶液配製 42
2-3-7 電洞傳輸層(Spiro-OMeTAD)溶液配製 42
2-4 正式(n-i-p)結構鈣鈦礦太陽能元件製作 42
2-4-1 FTO玻璃基板清洗 42
2-4-2 電子傳輸層-二氧化鈦緻密層製備 43
2-4-3 電子傳輸層-二氧化鈦介孔層製備 43
2-4-4 旋塗製備鈣鈦礦薄膜 44
2-4-5 刮刀塗佈法製備鈣鈦礦薄膜 44
2-5-6 電洞傳輸層(Spiro-OMeTAD)製備 45
2-4-7 蒸鍍銀電極 46
第三章 結果與討論(一) 47
3-1 延遲退火與立即退火形成鈣鈦礦比較 47
3-1-1 表面形貌分析 47
3-1-2 材料結構分析 51
3-1-3 太陽能電池效率表現 52
3-2 碘化鉀摻雜改善鈣鈦礦薄膜缺陷 54
3-2-1 摻雜不同濃度碘化鉀之鈣鈦礦太陽能電池效率比較 54
3-2-2 鈣鈦礦表面形貌分析 57
3-2-3 材料結構分析 59
3-2-4 薄膜光電性質分析 60
3-3 三碘陰離子改質鈣鈦礦薄膜 62
3-3-1 鈣鈦礦表面形貌分析 62
3-3-2 摻雜不同濃度碘之鈣鈦礦太陽能電池效率比較 63
3-4 鈣鈦礦光電性質比較 65
3-4-1 鈣鈦礦薄膜光電性質比較 65
3-4-2 太陽能電池效率表現 69
第三章 結果與討論(二) 72
3-5 界面活性劑混合鈣鈦礦影響 72
3-5-1 材料結構分析 72
3-5-2 鈣鈦礦太陽能電池效率表現 75
第四章 結論 80
第五章 參考文獻 81
參考文獻 [1] https://www.nrel.gov/pv/cell-efficiency.html.
[2] https://www.solarenergyworld.com/solar-history-alexandre-edmond/.
[3] https://www.aps.org/publications/apsnews/200904/physicshistory.cfm.
[4] Chapin, D. M.; Fuller, C. S.; Pearson, G. L. Journal of Applied Physics 1954, 25, 676-677.
[5] Shockley, W.; Queisser, H. J.; Journal of Applied Physics 1961, 32, 510-519.
[6] Kearns, D.; Calvin, M. J. Chem. Phys. 1958, 29, 950-951.
[7] Tang, C. W. Appl. Phys. Lett. 1986, 48, 183-185.
[8] Yakimov, A.; Forrest, S. R. Appl. Phys. Lett. 2002, 80, 1667-1669.
[9] Mutolo, K. L.; Mayo, E. I.; Rand, B. P.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2006, 128, 8108-8109.
[10] Tsukamoto, J.; Ohigashi, H.; Matsumura, K.; Takahashi, A. Japanese Journal of Applied Physics 1981, 20, L127-L129.
[11] Yu, G.; Zhang, C.; Heeger, A. J. Appl. Phys. Lett. 1994, 64, 1540-1542.
[12] Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. Appl. Phys. Lett. 2001, 78, 841-843.
[13] Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J. Adv.Funct.Mater. 2005, 15, 1617-1622.
[14] Che, X.; Li, Y.; Qu, Y.; Forrest, S. R. Nature Energy 2018, 3, 422-427.
[15] Bourdon, J. J. Phys. Chem. 1965, 69, 705-713.
[16] Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T. Nature 1976, 261, 402-403.
[17] O′Regan, B.; Grätzel, M. Nature 1991, 353, 737-740.
[18] Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F.; Ashari-Astani, N.; Tavernelli, l.; Rothlisberger, U.; Nazeeruddin, K.; Grätzel, M. Nature Chemistry 2014, 6, 242-247.
[19] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050-6051.
[20] Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Grätzel, M.; Park, N. G. Scientific Reports 2012, 2, 591-597.
[21] Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643-647.
[22] Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature 2013, 499, 316-319.
[23] Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S.I. Nature Materials 2014, 13, 897-903.
[24] Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Science 2015, 348, 1234-1237.
[25] Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. Chem Sci. 2016, 7, 4548-4556.
[26] Koh, T. M.; Fu, K.; Fang, Y.; Chen, S.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G.; Boix, P. P.; Baikie, T. J. Phys. Chem. C 2013, 118, 16458-16462.
[27] Pang, S.; Hu, H.; Zhang, J.; Lv, S.; Yu, Y.; Wei, F.; Qin, T.; Xu, H.; Liu, Z.; Cui, G. Chem. Mater. 2014, 26, 1485-1491.
[28] Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982-988.
[29] Lee, J. W.; Seol, D. J.; Cho, A. N.; Park, N. G. Adv Mater. 2014, 26, 4991-4998.
[30] Yu, G.; Zhang, C.; Heeger, A. J. Appl. Phys. Lett. 1994, 64, 1540-1542.
[31] Binek, A.; Hanusch, F. C.; Docampo, P.; Bein, T. J Phys Chem Lett. 2015, 6, 1249-1253.
[32] Eperon, G. E.; Bryant, D.; Troughton, J.; Stranks, S. D.; Johnston, M. B.; Watson, T.; Worsley, T. A.; Snaith, H. J. J Phys Chem Lett. 2015, 6, 129-138.
[33] Ma, F.; Li, J.; Li, W.; Lin, N.; Wang, L.; Qiao, J. Chem Sci. 2017, 8, 800-805.
[34] Pellet, N.; Gao, P.; Gregori, G.; Yang, T. Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M. Angew. Chem. Int. Ed. 2014, 53, 3151-3157.
[35] Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Nature 2015, 517, 476-480.
[36] Kulbak, M.; Cahen, D.; Hodes, G. J Phys Chem Lett. 2015, 6, 2452-2456.
[37] Yang, W. S.; Park, B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I. Science 2017, 356, 1376-1379.
[38] Bag, S.; Durstock, M. F. ACS Appl. Mater. Interfaces 2016, 8, 5053-5057.
[39] Chang, J.; Lin, Z.; Zhu, H.; Isikgor, F. H.; Xu, Q. H.; Zhang, C.; Hao, Y.; Ouyang, J. J. Mater. Chem. A 2016, 4, 16546-16552.
[40] Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019-9038.
[41] Hao, F.; Stoumpos, C. C.; Chang, R. P.; Kanatzidis, M. G. J Am Chem Soc. 2014, 136, 8094-8099.
[42] Zuo, F.; Williams, S. T.; Liang, P. W.; Chueh, C. C.; Liao, C. Y.; Jen, A. K. Adv Mater. 2014, 26, 6454-6460.
[43] Liao, W.; Zhao, D.; Yu. Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R. G.; Yan, Y. Adv Mater. 2016, 28, 9333-9340.
[44] Jung, M. C.; Raga, S. R.; Qi, Y. RSC Adv. 2016, 6, 2819-2825.
[45] Yokoyama, T.; Cao, D. H.; Stoumpos, C. C.; Song, T. B.; Sato, Y.; Aramaki, S.; Kanatzidis, M. J. J Phys Chem Lett. 2016, 7, 776-782.
[46] Shao, S.; Liu, J.; Portale, G.; Fang, H. H.; Blake, G. R.; ten Brink, G. H.; Koster, L. J. A.; Loi, M. A. Adv. Energy Mater. 2018, 8, 1702019.
[47] Stoumpos, C. C.; Frazer, L.; Clark, D. J.; Kim, Y. S.; Rhim, S. H.; Freeman, A.J.; Ketterson, J. B.; Jang, J. I.; Kanatzidis, M. G.; J Am Chem Soc. 2015, 137, 6804-6819.
[48] Park, B. W.; Philippe, B.; Zhang, X.; Rensmo, H.; Boschloo, G.; Johansson, E. M. Adv Mater. 2015, 27, 6806-6813.
[49] Saparov, B.; Hong, F.; Sun, J. P.; Duan, H. S.; Meng, W.; Cameron, S.; Hill, I. G.; Yan, Y.; Mitzi, D. B. Chem. Mater. 2015, 27, 5622-5632.
[50] Pan, S. D.; Chen, X. H.; Li, X. P.; Cai, M. Q.; Shen, H. Y.; Zhao, Y. G.; J. Mater. Chem. A, 2019, 7, 15453–15455.
[51] Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764-1769.
[52] Ke, W.; Xiao, C.; Wang, C.; Saparov, B.; Duan, H. S.; Zhao, D.; Xiao, Z.; Schulz, P.; Harvey, S. P.; Liao, W.; Meng, W.; Yu, Y.; Cimaroli, A. J.; Jiang, S. V.; Zhu, K.; Al-Jassim, M.; Fang, G.; Mitzi, D. B.; Yan, Y. Adv Mater. 2016, 28, 5214-5221.
[53] Tang, S.; Deng, Y.; Zheng, X.; Bai, Y.; Fang, Y.; Dong, Q.; Wei, H.; Huang, J. Adv. Energy Mater. 2017, 7, 1700302
[54] Li, J.; Munir, R.; Fan, Y.; Niu, T.; Liu, Y.; Zhong, Y.; Yang, Z.; Tian, Y.; Liu, B.; Sun, J.; Smilgies, D. M.; Thoroddsen, S.; Amassian, A.; Zhao, K.; Liu, S. F. Joule 2018, 2, 1313-1330.
[55] Hwang, K.; Jung, Y. S.; Heo, Y. J.; Scholes, F. H.; Watkins, S. E.; Subbiah, J.; Jones, D. J.; Kim, D. Y.; Vak, D. Adv Mater. 2015, 27, 1241-1247.
[56] Vak, D.; Hwang, K.; Faulks, A.; Jung, Y. S.; Clark, N.; Kim, D. Y.; Wilson, G. J.; Watkins, S. E. Adv. Energy Mater. 2015, 5, 1401539.
[57] Barrows, A. T.; Pearson, A. J.; Kwak, C. K.; Dunbar, A. D. F.; Buckley, A. R.; Lidzey, D. G. Energy Environ Sci. 2014, 7, 2944-2950.
[58] Li, F.; Bao, C.; Zhu, W.; Lv, B.; Tu, W.; Yu, T.; Yang, J.; Zhou, X.; Wang, Y. Wang, X.; Zhou, Y.; Zou, Z. J. Mater. Chem. A 2016, 4, 11372-11380.
[59] Das, S.; Yang, B.; Gu, G.; Joshi, P. C.; Ivanov, I. N.; Rouleau, C. M.; Aytug, T.; Geohegan, D. B.; Xiao, K. ACS Photonics 2015, 2, 680-686.
[60] Leyden, M. R.; Ono, L. K.; Raga, S. R.; Kato, Y.; Wang, S.; Qi, Y. J. Mater. Chem. A 2014, 2, 18742-18745.
[61] Pammi, S. V. N.; Lee, H. W.; Eom, J. H.; Yoon, S. G. ACS Appl. Energy Mater. 2018, 1, 3301−3312
[62] Tran, V. D.; Pammi, S. V. N.; Dao, V. D.; Choi, H. S.; Yoon, S. G. Journal of Alloys and Compounds 2018, 747, 703-711.
[63] Tavakoli, M. M.; Zakeeruddin, S. M.; Grätzel, M.; Fan, Z. Adv Mater. 2018, 30, 1705998.
[64] Stümmler, D.; Sanders, S.; Pfeiffer, P.; Wickel, N.; Simkus, G.; Heuken, M.; Baumann, P. K.; Vescan, A.; Kalisch, H. MRS Advances 2018, 3, 3069-3074.
[65] Stümmler, D.; Sanders, S.; Gerstenberger, F.; Pfeiffer, P.; Simkus, G.; Baumann, P. K.; Heuken, M.; Vescan, A.; Kalisch, H. 2019, 34, 608-615.
[66] Yin, W. J.; Shi, T.; Yan, Y. Appl. Phys. Lett. 2014, 104, 063903.
[67] Du, M. H. J. Mater. Chem. A 2014, 2, 9091-9098.
[68] Du, M. H. J Phys Chem Lett. 2015, 6, 1461-1466.
[69] Liu, Z.; Hu, J.; Jiao, H.; Li, L.; Zheng, G.; Chen, Y.; Huang, Y.; Zhang, Q.; Shen, C.; Chen, Q.; Zhou, H. Adv Mater. 2017, 29, 1606774.
[70] Shao, Y.; Xiao, Z.; Bi, C.; Yuan, Y.; Huang, J. Nat Commun. 2014, 5, 5784.
[71] Zheng, X.; Chen, B.; Dai, J.; Fang, Y.; Bai, Y.; Lin, Y.; Wei, H.; Zeng, X. C.; Huang, J. Nature Energy 2017, 2, 17102.
[72] Niu, T.; Lu, J.; Munir, R.; Li, J.; Barrit, D.; Zhang, X.; Hu, H.; Yang, Z.; Amassian , A.; Zhao, K.; Liu, S. F. Adv.Mater. 2018, 30, 1706576.
[73] Zhou, Z.; Wang, Z.; Zhou, Y.; Pang, S.; Wang, D.; Xu, H.; Liu, Z.; Padture, N. P.; Cui, G. Angew.Chem.Int.Ed. 2015, 54, 9705–9709.
[74] Zou, Y.; Wang, H. Y.; Qin, Y.; Mu, C.; Li, Q.; Xu, D.; Zhang, J. P. Adv. Funct. Mater. 2019, 29, 1805810.
[75] Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. Grätzel, M. Energy Environ Sci. 2016, 9, 1989-1997.
[76] Son, D. Y.; Kim, S. G.; Seo, J. Y.; Lee, S. H.; Shin, H.; Lee, D.; Park, N. G. J. Am. Chem. Soc. 2018, 140, 1358-1364.
[77] Sha, W. E.; Ren, X.; Chen, L.; Choy, W. C. H. APL. Appl. Phys. Lett. 2015, 106, 221104.
[78] Xiao, Z.; Yuan, Y.; Shao, Y.; Wang, Q.; Dong, Q.; Bi, C.; Sharma, P.; Gruverman, A.; Huang, J. Nature Materials 2015, 14, 193-198.
[79] Wetzelaer, G. J.; Scheepers, M, Sempere, A. M.; Momblona, C.; Avila, J.; Bolink, H. J. Adv. Mater. 2015, 27, 1837-1841.
[80] Conwell, E.; Weisskopf, V. F. Physical Review 1950, 77, 388-390.
[81] Leijtens, T.; Eperon, G. E.; Barker, A. J.; Grancini, G.; Zhang, W.; Ball, J. M.; Kandada, A. R. S.; Snaith, H. J.; Petrozza, A. Energy Environ. Sci. 2016, 9, 3472-3481.
[82] Miyano, K.; Tripathi, N.; Yanagida, M.; Shirai, Y. Acc. Chem. Res. 2016, 49, 303-310.
[83] Kubicki, D. J.; Prochowicz, D.; Hofstetter, A.; Zakeeruddin, S. M.; Grätzel, M.; Emsley, L. J. Am. Chem. Soc. 2018, 140, 7232-7238.
[84] Liu, N.; Yam, C. Phys. Chem. Chem. Phys. 2018, 20, 6800-6804.
[85] Deng, Y.; Zheng, X.; Bai, Y.; Wang, Q.; Zhao, J.; Huang, J. Nature Energy 2018, 3, 560-566.
[86] Ye, F.; Xie, F.; Yin, M.; He, J.; Wang, Y.; Tang, W.; Chen, H.; Yang, X.; Han, L. Applied Physics Express 2017, 10, 075502.
[87] Seto, J. Y. W. Journal of Applied Physics 1975, 46, 5247-5254.
指導教授 劉青原 李坤穆(Ching-Yuan Liu Kun-Mu Lee) 審核日期 2019-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明