博碩士論文 106324036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.222.67.251
姓名 林貫雲(Kuan-Yun Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
(Initial Solvent Screening and Adsorption Behaviors of Zoledronic Acid Trihydrate on Hydroxyapatite Surface)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選
★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長
★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究★ 蔗糖的同質異構型構
★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例
★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣
★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究
★ 生命的起源與天門冬氨酸在水中的結晶★ 微調具光學活性聯二萘酚和其二甲亞碸包合物的光激發光性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 雙膦酸鹽Bisphosphonate(BP)是一類用於治療和預防很多種骨疾病重要的藥物,尤其是用於骨質疏鬆症,由於這些藥物對鈣離子的親和力很強,磷酸鈣(如羥基磷灰石(HA))是研究吸附行為的理想材料。我們的目的是通過TGA、DSC和PXRD技術研究不同的固態形態的唑來膦酸水合物,並通過一些動力學模型和等溫吸附模型研究唑來膦酸三水合物對羥基磷灰石的吸附行為。唑來膦酸水合物的固態可通過加濕,乾燥或冷卻方法轉化為任何型態的唑來膦酸水合物,我們還針對唑來膦酸三水合物,其為唑來膦酸水合物的穩定形式,進行初始溶劑篩选和溶解度測試,以找出吸附實驗的最佳參數。研究了初始唑來膦酸三水合物濃度,接觸時間,溫度,pH值對羥基磷灰石吸附量的影響。Pseudo-second-order模型(R2>0.99) 可以很好地描述吸附動力學,表明了化學吸附的發生,吸附動力學可能是受邊界層擴散控制。同時,實驗數據使用Languir等溫模型(R2>0.99)比Freundlich和Dubinin-Radushkevich等溫模型可以更好的擬合本研究的吸附行為,表現出吸附特徵是單層吸附。吸附焓為40.3kJ / mol,表明吸附為吸熱過程。
摘要(英) Bisphosphonates (BPs) are well established as an important class of drugs for the treatment and prevention of several bone disorders especially for osteoporosis. Due to the great affinity of these drugs for calcium ions, calcium phosphates such as hydroxyapatite (HA) are the ideal material for studying behaviors of the adsorption. Our aims are to investigate different solid-state forms of zoledronic acid hydrates by TGA, DSC and PXRD techniques, and to study the adsorption behaviors of zoledronic acid trihydrate on hydroxyapatite by several kinetics and isotherm models. The solid-state of zoledronic acid hydrate could be transformed into any desired form by using humidification, drying or cooling method. We also aimed to zoledronic acid trihydrate, which is the stable form of zoledronic acid hydrate, conducting initial solvent screening and solubility test in order to find out the optimal parameters for the adsorption experiment. Effects of initial zoledronic acid trihydrate concentration, contact time, temperature, pH on the adsorption capacity of hydroxyapatite were investigated in detail. The adsorption kinetics could be well described by the pseudo-second-order model (R2>0.99) which indicated the occurrence of chemisorption, and the adsorption kinetics might be controlled by boundary layer diffusion. Meanwhile, the experimental equilibrium data were fitted the best by using the Langmuir model (R2>0.99) rather than the Freundlich and Dubinin-Radushkevich isotherm models, suggesting that the adsorption feature might be in the fashion of monolayer. The adsorption enthalpy was 40.3 kJ/mol depicting the adsorption exhibited endothermic process.
關鍵字(中) ★ 雙膦酸鹽
★ 唑來膦酸
★ 羥基磷灰石
★ 吸附
關鍵字(英) ★ bisphosphonates
★ zoledronic acid
★ hydroxyapatite
★ adsorption
論文目次 Table of Contents
摘要 I
Abstract II
Acknowledgement III
Table of Contents IV
List of Figures VII
List of Tables XII
Chpater 1 Executive Introduction 1
1.1 Brief Introduction of Adsorption 1
1.2 Brief Introduction of Bone Resorption 3
1.3 Bisphosphates 4
1.4 Calcium Phosphates as Delivery Systems 8
1.5 Conceptual Framework 10
1.6 References 11
Chpater 2 Materials and Experiments 15
2.1 Materials 15
2.2 Experimental Methods 17
2.2.1 Preparation of Zoledronic Acid Trihydrate by Humidification 17
2.2.2 Initial Solvent Screening 18
2.2.3 Cooling Crystallization 19
2.2.4 Adsorption of Zoledronic Acid Trihydrate on Hydroxyapatite 19
2.3 Isotherm Adsorption Models 21
2.3.1 Langmuir Adsorption Isotherm 21
2.3.2 Freundlich Adsorption Isotherm 23
2.3.3 Dubinin-Radushkevich Isotherm 25
2.4 Instruments 27
2.4.1 Microscopic Methods 27
2.4.2 Thermal Analysis Methods 32
2.4.3 Spectroscopic Methods 37
2.4.4 Crystallographic Analysis Methods 40
2.4.5 Surface Analysis Method 42
2.5 References 44
Chpater 3 Results and Discussion 47
3.1 Characterization of Anhydrous Zoledronic Acid, Zoledronic Acid Monohydrate, and Zoledronic Acid Trihydrate 47
3.1.1 Thermal Analysis 47
3.1.2 Crystal Habits 51
3.1.3 PXRD Patterns 52
3.1.4 Solubility 55
3.2 Characterization of Hydroxyapatite 58
3.2.1 PXRD Patterns 58
3.2.2 SEM Images and BET Surface Analysis 59
3.2.3 FTIR Analysis 62
3.3 Adsorption Behaviors of Zoledronic Acid Trihydrate of Hydroxyapatite surface 64
3.3.1 pH Study 64
3.3.2 Adsorption Kinetics 66
3.3.3 Adsorption Isotherms 70
3.3.4 Thermodynamic study 74
3.4 References 76
Chpater 4 Conclusions and Future Work 79
4.1 Conclusions 79
4.2 Future work 81
參考文獻 Tien, C. Introduction to Adsorption : Basics, Analysis, and Applications; 1st edition.; Elsevier: Cambridge, MA, 2018.
Kouyoumdjiev, M. S. Kinetics of Adsorption from Liquid Phase on Activated Carbon; Eindhoven: Technische Universiteit Eindhoven, 1992.
Milan, K. Adsorption, chemisorption, and catalysis. Chem. Pap. 2014, 68(12), 1625-1638.
Ducy, P.; Schinke, T.; Karsenty, G. The Osteoblast: A Sophisticated Fibroblast under Central Surveillance. Science, 2000, 289(484), 1501-1504.
Teitelbaum, S. L. Bone Resorption by Osteoclasts. Science. 2000, 289(5484), 1504-1508.
John E. H. Guyton and Hall Textbook of Medical Physiology; 12th Edition.; Elsevier: Cambridge MA, 2016.
Clarke, B. Normal Bone Anatomy and Physiology. Clin. J. Am. Soc. Nephrol. 2008, 3(3), 131-139.
Maurel, D. B.; Jaffre, C.; Rochefort, G. Y.; Aveline, P. C.; Boisseau, N.; Uzbekov, R.; Gosset, D.; Pichon, C.; Fazzalari, N. L. Low Bone Accrual is Associated with Osteocyte Apoptosis in Alcohol-Induced Osteopenia. Bone. 2011, 49(3), 543-552.
Akesson, K. New Approaches to Pharmacological Treatment of Osteoporosis. Bull. World Health Organ. 2003, 81(9), 657-664.
Dhanwal, D. K.; Dennison, E. M.; Harvey, N.C.; Cooper, C. Epidemiology of Hip Fracture: Worldwide Geographic Variation. Ind. J. Orthop. 2011, 45(1), 15-22.
Drake, M. T.; Clarke, B. L.; Lewiecki, E. M. The Pathophysiology and Treatment of Osteoporosis. Clin. Ther. 2015, 37(8), 1837-1850.
Russell, R. G. G.; Watts, N. B.; Ebetino, F. H.; Rogers, M. J. Mechanisms of Action of Bisphosphonates: Similarities and Differences and their Potential Influence on Clinical Efficacy. Osteoporos. 2008, 19(6), 733-759.
Russell, R. G. G. Bisphosphonates: the first 40 years. Bone, 2011, 49(1), 2-19.
Fazil, M.; Baboota, S.; Sahni, J. K.; Ameeduzzafar; Ali, J. Bisphosphonates: Therapeutics
Potential and Recent Advances in Drug Delivery. Drug Deliv. 2015, 22(1), 1-9.
Lawson, M. A.; Xia, Z.; Barnett, B. L.; Triffitt, J. T.; Phipps, R. J.; Dunford, J. E.; Locklin, R. M.; Ebetino, F. H.; Russell, R. G. Differences Between Bisphosphonates in Binding Affinities for Hydroxyapatite. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 92(1), 149-155.
Boanini, E.; Torricelli, P.; Gazzano, M.; Giardino, R.; Bigi, A. Alendronate Hydroxyapatite Nanocomposites and their Interaction with Osteoclasts and Osteoblast-like Cells. Biomaterials. 2008, 29(7), 790-796.
Dalle Carbonare, L.; Zanatta, M.; Gasparetto, A.; Valenti, M. T. Safety and Tolerability of Zoledronic Acid and Other Bisphosphonates in Osteoporosis Management. Drug Healthc Patient Saf. 2010, 2010(2), 121-137.

Rogers, M. J.; Crockett, J. C.; Coxon, F. P.; Mönkkönen, J. Biochemical and Molecular Mechanisms of Action of Bisphosphonates. Bone, 2011, 49(1), 34-41.
Solomon, C. G. Bisphosphonates and Osteoporosis. N. Engl. J. Med. 2002, 346(9), 642-642.
Ott, S. M. Long-term Safety of Bisphosphonates. J. Clin. Endocrinol. Metab. 2005, 90(3), 1897-1899.
Verron, E.; Bouler, J. M. Is Bisphosphonate Therapy Compromised by the Emergence of Adverse Bone Disorders? Drug Discov. Today. 2014, 19(3), 312-319.
Fazil, M.; Baboota, S.; Sahni, J. K.; Ameeduzzafar, A. J. Bisphosphonates: Therapeutics Potential and Recent Advances in Drug Delivery. Drug Deliv. 2015, 22(1), 1-9.
Doggrell, S. A. Zoledronate Once-yearly Increases Bone Mineral Density—Implications for Osteoporosis. Expert Opin Pharmaco. 2002, 3(7),1007-1009.
Bigi, A.; Boanini, E.; Gazzano, M.; Aparicio, C.; Ginebra, M. P. Ion Substitution in Biological and Synthetic Apatites. In Biomineralization and Biomaterials, Foundamentals and Applications; 1st edition.; Woodhead Publishing (Imprint Elsevier): Cambridge, UK, 2015, 235-266.
Xu, Q.; Tanaka, Y.; Czernuszka, J. T. Encapsulation and Release of a Hydrophobic Drug from Hydroxyapatite Coated Liposomes. Biomaterials. 2007, 28(16), 2687-2694.

Venkatesan, P.; Puvvada, N.; Dash, R.; Prashanth Kumar, B. N.; Sarkar, D.; Azab, B.; Pathak, A.; Kundu, S. C.; Fisher, P. B.; Mandal, M. The potential of Celecoxib-loaded Hydroxyapatite-Chitosan Nanocomposite for the Treatment of Colon Cancer. Biomaterials. 2011, 32(15), 3794-3806.
Bigi, A. and Boanini, E. Functionalized Biomimetic Calcium Phosphates for Bone Tissue Repair. J. Appl. Biomater. Funct. Mater. 2017, 15(4), 313-325.
Boanini, E.; Gazzano, M.; Rubini, K.; Bigi, A. Composite Nanocrystals Provide New Insight on Alendronate Interaction with Hydroxyapatite Structure. Adv. Mater. 2007, 19(18), 2499-2502.
Boanini, E.; Gazzano, M.; Bigi, A. Time Course of Zoledronate Interaction with Hydroxyapatite Nanocrystals. J. Phys. Chem. C. 2012, 116(29), 15812-15818.
Pascaud, P.; Errassifi, F.; Brouillet, F.; Sarda, S.; Barroug, A.; Legrouri, A.; Rey, C. Adsorption on Apatitic Calcium Phosphates for Drug Delivery: Interaction with Bisphosphonate Molecules. J. Mater. Sci. Mater. Med. 2014, 25(10), 2373-2381.
Faucheux, C.; Verron, E.; Soueidan, A.; Josse, S.; Arshad, M.D.; Janvier, P.; Pilet, P.; Bouler, J.M.; Bujoli, B.;Guicheux, J. Controlled Release of Bisphosphonate from a Calcium Phosphate Biomaterial Inhibits Osteoclastic Resorption In-Vitro. J. Biomed. Mater. Res. Part A. 2009, 89(1), 46-56.
Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal habit of Acetaminophen and Ibuprofen by Initial Solvent Screening. Pharm. Tech. 2006, 30(10), 72–92.
Forte, L.; Sarda, S.; Combes, C.; Brouillet, F.; Gazzano, M.; Marsan, O.; Boanini, E.; Bigi, A. Hydroxyapatite Functionalization to Trigger Adsorption and Release of Risedronate. Colloids Surf. B : Biointerfaces. 2017, 160, 493-499.
Vermeulan, T. H.; Vermeulan, K. R.; Hall, L. C. Pore- and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions. Ind. Eng. Chem. Fund. 1966, 5(2), 212–223.
Webber, T. N.; Chakravarti, R. K. Pore and Solid Diffusion Models for Fixed Bed Adsorbers. J. Am. Inst. Chem. Eng. 1974, 20(2), 228-238.
Butt, H. J.; Graf, K.; Kappl, M. Physical and Chemistry of Interfaces; Wiley-VCH, Weinheim, Germany, 2004.
Hutson, N. D.; Yang, R. T. Structural Effects on Adsorption of Atmospheric Gases in Mixed Li,Ag–X‐zeolite. AIChE J. 2000, 46(11), 2305-2317.
Voudrias, E.; Fytianos, F.; Bozani, E. Sorption Description Isotherms of Dyes from Aqueous Solutions and Waste Waters with Different Sorbent Materials. Global Nest, The Int. J. 2002, 4(1), 75-83.
Mohan, S.; Karthikeyan, J. Removal of Lignin and Tannin Color from Aqueous Solution by Adsorption on to Activated Carbon Solution by Adsorption on to Activated Charcoal. Environ. Pollut. 1997, 97(1), 183-187.
Guadalupe, R.; Reynel-Avila, H. E.; Bonilla-Petriciolet, A.; Cano-Rodríguez, I.; Velasco-Santos, C.; Martínez-Hernández, A. L. Recycling Poultry Feathers for Pb Removal from Wastewater: Kinetic and Equilibrium Studies. World Acad. Sci. Eng. Technol. 2008, 30(2), 1011-1019.
Sabine, G. Equations and Models Describing Adsorption Processes in Soils. Soil Sci. Soc. Am. J. 2005, 489-517.
Gunay, A.; Arslankaya, E.; Tosun, I. Lead Removal from Aqueous Solution by Natural and Pretreated Clinoptilolite: Adsorption Equilibrium and Kinetics. J. Hazard. Mater. 2007, 146(1), 362-371.
Dabrowski, A. Adsorption—from Theory to Practice. Adv. Colloid Interface Sci. 2001, 93(1), 135–224.
Dubinin, M. M. The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Non-uniform Surface. Chem. Rev. 1960, 60(2), 235-266.
Hobson, J. P. Physical Adsorption Isotherms Extending from Ultra-high Vacuum to Vapor Pressure. J. Phys. Chem. 1969, 73(8), 2720-2727.
Foo, K. Y.; Hameed, B. H. Insights into the Modeling of Adsorption Isotherm Systems. Rev. Chem. Eng. 2010, 156(1), 2-10
Macur, J. E.; Marti, J.; Lui, S. C. Materials Characterization and Chemical Analysis;
Wiley-Vch: New York, 1996.
Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis; Thomson Learning: USA, 2007.
Reed-hill, R. E. Physical Metallurgy Principles; PWS Publishing Company: Boston, 1994.
Russell, S. D.; Daghlian, C. P. Scanning Electron Microscopic Observations on Deembedded Biological Tissue Sections: Comparison of Different Fixatives and Embedding Materials. J. Electron. Microsc. Tech. 1985, 2(5), 489-495.
Haines, P. J.; Wiburn, F. W. Thermal Analysis and Differetial Seaning Calorimetry, Applications and Problems; Blackie Academic and Professional: New York, 1995.

Boldyerva, E. V.; Drebushchak, V. A.; Paukov, I. E.; Kovalevskaya, Y. A.; Drebushchak, T. N. DSC and Adiabatic Calorimetry Study of the Polymorphs of Paracetamol. Jof Them. Anal. Calor. 2004, 77(2), 607-623.
Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis; Thomson Learning: USA, 2007.
Kong, Y.; Hay, N. J. The Measurement of the Crystallinity of Polymers by DSC. Polymer. 2002, 43(14), 3874-3878.
Rouessac, F.; Rouessac, A. Infrared Spectroscopy; John Willy &Sons: Chichester, 2001.
Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis; Thomson Learning: Mississippi, 2007.
Murhy, N. S.; Reidinger, F. Materials Characterization and Chemical Analysis; Wiley-Vch Publishers: New York, 1996.
Davidovich, M.; Dimarco, J.; Gougoutas, J. Z.; Scaringe, R. P.; Vitez, I.; Yin, S. Detection of Polymorphic Artifacts in Powder X-ray Diffraction Determination. Am. Pharm. Rev. 1996, 138(1), 1-2.
Smith, W. F. Foundations of Materials Science and Engineering; McGraw-Hill Company: USA, 2004.
Rajendra, K. K.; David, J. W. G. Pharmaceutical Hydrates. Thermochim. Acta. 1995, 248, 61-79.
Frank R. F. CCDC 1562048: Experimental Crystal Structure Determination. 2017.
Ruscica, R.; Bianchi, M.; Quintero, M.; Martinez, A.; Vega, D. R. CCDC 693503: Experimental Crystal Structure Determination. 2011.
Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibruprofen by Initial Solvent Screening. Pharm. Tech. 2006, 30(10), 72-92.
Eichert, D.; Drouet, C.; Sfihi, H.; Rey, C.; Combes, C. Nanocrystalline Apatite-based Biomaterials: Synthesis, Processing and Characterization. Biomater. Res. Adv. 2008, 93-143.
Albert, M.; Clifford, A.; Zhitomirsky, I.; Rubel, O. CCDC 1582976: Experimental Crystal Structure Determination. 2018.
Mary Prasanthi, M.; Appa Rao, B.; V Narasimha Rao, B.; Phani Krishna, Y.; Venkata Ramana, D. Formulation and Evaluation of Zoledronic Acid for Injection by Lyophilization Technique. Int. Res. J. Pharm. 2017, 8(2), 50-56.
Chandrasekaran, A.; Suresh, S.; Dakshanamoorthy, A. Synthesis and Characterization of Nano-hydroxyapatite (n-HAP) Using the Wet Chemical Technique. Int. J. Phys. Sci. 2013, 8(30), 1639-1645.
Benaziz, L.; Barrouga, A.; Legrouri, A.; Rey, C.; Lebugle, A. Adsorption of O-phospho-L-serine and L-serine onto Poorly Crystalline Apatite. J. Colloid Interface Sci. 2001, 238(1), 48-53.
Ouizat, S.; Barroug, A.; Legrouri, A.; Rey, C. Adsorption of Bovine Serum Albumin on Poorly Crystalline Apatite: Influence of Maturation. Mater. Res. Bull. 1999, 34(14). 2279-2289.
Barroug, A.; Lernoux, E.; Lemaitre, J.; Rouxhet, P. G. Adsorption of Catalase on Hydroxyapatite. J. Colloid Interface Sci. 1998, 208(1), 147-152.
Smith, R.,; Martell, A. E. Critical Stability Constants, Vol. 6; second supplement. Plenum, New York, 1989.
Vieillard, P.; Tardy, Y. Phosphate Minerals; Springer-Verlag, Berlin, 1984.
Ho, Y. S.; McKay, G.; Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998, 70(2), 115-124.
Lagergren, S. Y.. Zur theorie der sogenannten adsorption gelöster stoffe,
Kungliga Svenska Vetenskapsakademiens. Handlingar. 1898, 24(4), 1-39.
Ho, Y. S. Citation review of Lagergren kinetic rate equation on adsorption
Reactions. Scientometrics. 2004, 59(1), 171-177.
Ho, Y. S.; McKay, G. Pseudo-second order model for sorption processes. Process
Biochem. 1999, 34(5), 451-465.
Ho, Y. S. Review of second-order models for adsorption systems. J. Hazard.
Mater. 2006, 136(3), 681-689.
Weber, W. J., Moriss, J. C. Kinetics of adsorption on carbon from solution. J.
Sanitary Eng. Div. Am. Soc. Civ. Eng. 1963, 89(2), 31-59.
Saha, B.; Das, S.; Saikia, J.; Das, G. Preferential and Enhanced Adsorption of Different Dyes on Iron Oxide Nanoparticles: a Comparative Study. J. Phys. Chem. B. 2011, 115(16), 8024-8033.
Zhou, J.; Yang, S.; Yu, J.; Shu, Z. Novel Hollow Microspheres of Hierarchical
Zinc–aluminum Layered Double Hydroxides and Their Enhanced Adsorption Capacity for Phosphate in Water. J. Hazard. Mater. 2011, 192(3), 1114-1121.
Ofomaja, A. E. Intraparticle Diffusion Process for Lead(II) Biosorption onto Mansonia Wood Sawdust. Bioresour. Technol. 2010, 101(15), 5868-5876.
Sheela, T.; Nayaka, Y. A. Kinetics and Thermodynamics of Cadmium and Lead Ions
Adsorption on NiO Nanoparticles. Chem. Eng. J. 2012, 191, 123-131.
McKay, G.; Otterburn, M.; Aga, J. Fuller’s Earth and Fired Clay as Adsorbents for Dyestuffs. Water Air Soil Pollut. 1985, 24(3), 307-322.
Mckay, G.; Vong, B.; F Porter, J. Isotherm Studies for the Sorption of Metal Ions onto Peat. Adsorpt. Sci. Technol. 1998, 16(1), 51-66.
Go´mez-Morales, J, Iafisco, M.; Delgado-Lópeza, J. M.; Sarda, S.; Drouet, C. Progress on the Preparation of Nano-crystalline Apatites and Surface Characterization: Overview of Fundamental and Applied Aspects. Prog. Cryst. Growth Charact. Mater. 2013, 59(1), 1-46.
Pascaud, P.; Gras, P.; Coppel, Y.; Rey, C.; Sarda, S. Interaction Between a Bisphosphonate, Tiludronate, and Biomimetic Nanocrystalline Apatites. Langmuir. 2013, 29(7), 2224-2232.
Pascaud, P.; Bareille, R.; Bourget, C.; Amédée, J.; Rey, C.; Sarda, S. Interaction Between a Bisphosphonate, Tiludronate and Nanocrystalline Apatite : In-Vitro Viability and Proliferation of HOP and HBMSC Cells. Biomed Mater. 2012, 7(5), 1-9.
Das, J.; Patra, B.S.; Baliarsingh, N.; Parida, K. M. Adsorption of Phosphate by Layered Double Hydroxides in Aqueous Solutions. Appl. Clay Sci. 2006, 32(3), 252-260.
指導教授 李度(Tu Lee) 審核日期 2019-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明