博碩士論文 106324039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.15.197.123
姓名 吳欣旻(Xin-Min Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鋯金屬有機框架材料之碳氫氣體吸附與分離預測
(Prediction of Hydrocarbon Storage and Separation Properties of Zr-Based Metal-Organic Frameworks)
相關論文
★ 以第一原理計算鋰嵌入與擴散於具氧空缺之二氧化鈦結構★ 以第一原理計算探討吸附銅團簇和銅鐵團簇的二氧化鈦對甲醇解離機制的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-6-30以後開放)
摘要(中) 碳氫氣體如甲烷、乙烷、丙烷、乙烯、丙烯通常在化學工業上製造,這些氣體對於化工上的應用具有很大的貢獻。舉例來說:甲烷是天然氣中常見的成分;而乙烷跟丙烷是非常基本的原料,可以生成乙酸、橡膠和塑料;乙烯可以應用於果實的催熟或是做為聚乙稀的原料,並且丙烯可以生成聚丙烯。在傳統的工業氣體分離,通常是用低溫蒸餾的方法進行,主要是在低溫及高壓的環境下進行分離程序,這需要耗費大量的能量。最近許多研究發現金屬有機骨架(MOFs)是潛在的氣體儲存和分離材料,因為該材料具有高表面積、無毒、具有高效率的儲氣能力。而在許多的MOF中,UiO-66系列是有機框架的結構中較為新穎的一種材料,因為它們易於合成並且具有熱穩定性和化學穩定性。而其改質的衍生物也引起了許多的關注,改質的衍生物對於氣體的吸附跟儲存會造成一定的影響力,因此,UiO-66及其改性材料被認為是氣體儲存和分離的理想候選材料。
在本研究中,我們使用UiO-66和改性衍生物與功能化有機連接體,如-NO2、-NH2、-Br和-(CH3)2來模擬純氣體和混合碳氫氣體吸附和分離,如C2H6 / CH4、C3H8 / C2H6,C2H6 / C2H4和C3H8 / C3H6。而在吸附的MOF結構中,其數據來自於劍橋晶體數據中心(Cambrdige Crystallographic Data Centre)以及模擬方法使用具正則蒙地卡羅法(grand canonical Monte Carlo)計算碳氫氣體的吸附、選擇比、能量分布以及氣體在結構中的分布位置。透過這項研究我們發現改性後的UiO-66在低壓下表現出比未改性結構更高的選擇性,並且在高壓下UiO-66具有良好的選擇性和比較大的氣體儲存量。此研究的優勢在於使用的模擬手法,系統性的探討鋯金屬有機框架的衍生物對於碳氫氣體的吸附行為與機制。
摘要(英) Light hydrocarbon gases such as methane, ethane, propane, ethylene, and propene are commonly used in industrial manufacturing and are important for the chemical industry. For example, methane is the most common component of natural gas, and ethane and propane are very basic raw materials that can be used to produce acetic acid, rubber, and plastics. Ethylene and propylene can be synthesize into polymers. Traditionally, gas separation is mainly done by cryogenic distillation, which should be operated at high pressure and low temperature, and requires massive amounts of energy. Recently, many research studies found that metal–organic frameworks (MOFs) are potential gas storage and separation materials because of their high surface area, nontoxic properties, and large gas storage capacity. UiO-66, a relatively new type of MOF, and its modified materials have attracted increased attention, because they can be easily synthesized and are thermally and chemically stable. Therefore, UiO-66 and its modified materials are considered ideal candidates for gas storage and separation.
In this work, we studied UiO-66 and modified derivatives with functionalized organic linkers, such as –NO2, –NH2, –Br and –(CH3)2 to simulate mixed light hydrocarbons adsorption and separation, such as C2H6/CH4, C3H8/C2H6, C2H6/C2H4, and C3H8/C3H6 pairs and respective pure composition adsorption. Cambridge Crystallographic Data Centre (CCDC) database was used to find initial experimentally determined MOF structures, while grand canonical Monte Carlo (GCMC) calculations were performed to obtain adsorption isotherm and adsorption site energy distribution data. A major finding of this work, is the different behavior of the materials at low and high pressures. Modified UiO-66 exhibits higher selectivity than the unmodified structure at low pressure, and at high pressure UiO-66 has good selectivity and large gas storage. This research provides discussion aimed at improving our understanding of gas adsorption behavior in zirconium-based MOFs and related functionalized forms.
關鍵字(中) ★ 碳氫氣體
★ 有機金屬框架
★ 改質
關鍵字(英) ★ Hydrocarbon gas
★ Metal-organic frameworks (MOFs)
★ Modified
論文目次 摘要 I
Abstract II
Table of Content IV
List of Figures VI
List of Tables XV
Chapter 1 Background 1
1.1 Introduction 1
1.2 Literature Review 4
1.3 Motivation 12
Chapter 2 Computational 14
2.1 Computational Package 14
2.1.1 Sorption Tool 14
2.1.2 Adsorption Locator 14
2.2 Theory 15
2.2.1 Ideal Absorbed Solution Theory (IAST) 15
2.3.2 Brunauer–Emmett–Teller (BET) Theory 17
2.2.3 Monte Carlo (MC) Method 18
2.2.4 Clausius–Clapeyron Relation & Isosteric Heat Theory 20
2.3 Computational Detail 21
2.3.1. Model Construction 21
2.3.2. Intermolecular Potentials 25
2.3.3. Monte Carlo simulation 27
2.3.4. Loading Conversion 28
Chapter 3 Results and Discussion 30
3.1 Physical Properties of UiO-66 and UiO-66 Modification 30
3.2 Adsorption Behavior of the UiO-66 and UiO-66 Modification in Pure Gas 33
3.2.1 Adsorption Isotherms 33
3.2.2 GCMC Adsorption Site 37
3.2.3 Pure Gas Adsorption 38
3.2.4 Isosteric Heat Calculations 42
3.2.5 Pure Gas Energy Distribution 47
3.3 Adsorption Behavior of UiO-66 and UiO-66 Modification in Mixture Gas 50
3.3.1 Adsorption Isotherms 50
3.3.2 The UiO-66 vs UiO-66-(CH3)2 Adsorption Site 53
3.3.3 The UiO-66-NO2 vs UiO-66-NH2 Adsorption Site 72
3.3.4 The UiO-66-Br Adsorption Site 88
3.3.5 Isosteric Heat Calculations 97
3.3.6 Mixture Gas Energy Distribution 98
Chapter 4 Conclusions 105
Chapter 5 Future Work 108
References 109
Appendix 115
A. Adsorption Isotherms 115
B. Density Mapping 117
B-1. Pure Gas Density Mapping 117
B-2. Mixture Gas Density Mapping 125
UiO-66 and UiO-66-(CH3)2 adsorption site for C2H6/C3H8 at low and high pressure 125
UiO-66 and UiO-66-(CH3)2 adsorption site for C3H8/C3H6 at low and high pressure 130
UiO-66-NO2 and UiO-66-NH2 adsorption site for C2H6/C3H8 at low and high pressure 135
UiO-66-NO2 and UiO-66-NH2 adsorption site for C3H8/C3H6 at low and high pressure 140
UiO-66-Br adsorption site for C2H6/C3H8 at low and high pressure 145
UiO-66-Br adsorption site for C3H8/C3H6 at low and high pressure 148
C. Isosteric Heat 151
D. Energy Distribution 152
參考文獻 [1] S. Collins, W. M. Kelly, D. A. Holden, “Polymerization of propylene using supported, chiral, ansa-metallocene catalysts: production of polypropylene with narrow molecular weight distributions ”, Macromolecules, Vol 25, 1780-1785, 1992.
[2] Y. He, W. Zhou, R. Krishna, B. Chen, “Microporous metal–organic frameworks for storage and separation of small hydrocarbons ”, Chemical Communications, Vol 48, 11813-11831, 2012.
[3] D. S. Sholl, R. P. Lively, “Seven chemical separations to change the world ”, Nature News, Vol 532, 435, 2016.
[4] X. Wang, L. Li, Y. Wang, J.-R. Li, J. Li, “Exploiting the pore size and functionalization effects in UiO topology structures for the separation of light hydrocarbons ”, CrystEngComm, Vol 19, 1729-1737, 2017.
[5] S. Li, J. L. Falconer, R. D. Noble, “Improved SAPO‐34 membranes for CO2/CH4 separations ”, Advanced Materials, Vol 18, 2601-2603, 2006.
[6] M. Plaza, S. García, F. Rubiera, J. Pis, C. Pevida, “Post-combustion CO2 capture with a commercial activated carbon: comparison of different regeneration strategies ”, Chemical Engineering Journal, Vol 163, 41-47, 2010.
[7] J. Van Huyssteen, “Gas chromatographic separation of anaerobic digester gases using porous polymers ”, Water Research, Vol 1, 237-242, 1967.
[8] O. V. Gutov, M. G. l. Hevia, E. C. Escudero-Adán, A. Shafir, “Metal–organic framework (MOF) defects under control: insights into the missing linker sites and their implication in the reactivity of zirconium-based frameworks ”, Inorganic Chemistry, Vol 54, 8396-8400, 2015.
[9] Y. Zhang, H. Xiao, X. Zhou, X. Wang, Z. Li, “Selective Adsorption Performances of UiO-67 for Separation of Light Hydrocarbons C1, C2, and C3 ”, Industrial & Engineering Chemistry Research, Vol 56, 8689-8696, 2017.
[10] M. Hartmann, U. Böhme, M. Hovestadt, C. Paula, “Adsorptive separation of olefin/paraffin mixtures with ZIF-4 ”, Langmuir, Vol 31, 12382-12389, 2015.
[11] N. Sikdar, S. Bonakala, R. Haldar, S. Balasubramanian, T. K. Maji, “Dynamic entangled porous framework for hydrocarbon (C2–C3) storage, CO2 capture, and separation ”, Chemistry–A European Journal, Vol 22, 6059-6070, 2016.
[12] D. A. Gómez-Gualdrón, Y. J. Colón, X. Zhang, T. C. Wang, Y.-S. Chen, J. T. Hupp, T. Yildirim, O. K. Farha, J. Zhang, R. Q. Snurr, “Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage ”, Energy & Environmental Science, Vol 9, 3279-3289, 2016.
[13] J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, “A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability ”, Journal of the American Chemical Society, Vol 130, 13850-13851, 2008.
[14] S. M. Rogge, J. Wieme, L. Vanduyfhuys, S. Vandenbrande, G. Maurin, T. Verstraelen, M. Waroquier, V. Van Speybroeck, “Thermodynamic insight in the high-pressure behavior of UiO-66: effect of linker defects and linker expansion ”, Chemistry of Materials, Vol 28, 5721-5732, 2016.
[15] H. R. Abid, J. Shang, H.-M. Ang, S. Wang, “Amino-functionalized Zr-MOF nanoparticles for adsorption of CO2 and CH4 ”, International Journal of Smart and Nano Materials, Vol 4, 72-82, 2013.
[16] Y. Jiang, C. Liu, J. Caro, A. Huang, “A new UiO-66-NH2 based mixed-matrix membranes with high CO2 /CH4 separation performance ”, Microporous and Mesoporous Materials, Vol 274, 203-211, 2019.
[17] Z. H. Rada, H. R. Abid, J. Shang, H. Sun, Y. He, P. Webley, S. Liu, S. Wang, “Functionalized UiO-66 by Single and Binary (OH)2 and NO2 Groups for Uptake of CO2 and CH4 ”, Industrial & Engineering Chemistry Research, Vol 55, 7924-7932, 2016.
[18] L. Xia, F. Wang, “Prediction of hydrogen storage properties of Zr-based MOFs ”, Inorganica Chimica Acta, Vol 444, 186-192, 2016.
[19] K. Sillar, A. Hofmann, J. Sauer, “Ab initio study of hydrogen adsorption in MOF-5 ”, Journal of the American Chemical Society, Vol 131, 4143-4150, 2009.
[20] B. Wang, H. Huang, X.-L. Lv, Y. Xie, M. Li, J.-R. Li, “Tuning CO2 selective adsorption over N2 and CH4 in UiO-67 analogues through ligand functionalization ”, Inorganic Chemistry, Vol 53, 9254-9259, 2014.
[21] F. Salles, A. Ghoufi, G. Maurin, R. G. Bell, C. Mellot‐Draznieks, G. Férey, “Molecular Dynamics Simulations of Breathing MOFs: Structural Transformations of MIL‐53 (Cr) upon Thermal Activation and CO2 Adsorption ”, Angewandte Chemie International Edition, Vol 47, 8487-8491, 2008.
[22] J. A. Greathouse, M. D. Allendorf, “The interaction of water with MOF-5 simulated by molecular dynamics ”, Journal of the American Chemical Society, Vol 128, 10678-10679, 2006.
[23] Q. Yang, A. D. Wiersum, P. L. Llewellyn, V. Guillerm, C. Serre, G. Maurin, “Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration ”, Chemical Communications, Vol 47, 9603-5, 2011.
[24] N. A. Ramsahye, et al., “Adsorption and Diffusion of Light Hydrocarbons in UiO-66(Zr): A Combination of Experimental and Modeling Tools ”, The Journal of Physical Chemistry C, Vol 118, 27470-27482, 2014.
[25] A. L. Myers, J. M. Prausnitz, “Thermodynamics of mixed‐gas adsorption ”, AIChE Journal, Vol 11, 121-127, 1965.
[26] S. Biswas, P. Van Der Voort, “A general strategy for the synthesis of functionalised UiO‐66 frameworks: characterisation, stability and CO2 adsorption properties ”, European Journal of Inorganic Chemistry, Vol 2013, 2154-2160, 2013.
[27] Z. H. Rada, H. R. Abid, H. Sun, S. Wang, “Bifunctionalized metal organic frameworks, UiO-66-NO2-N (N=-NH2,-(OH) 2,-(COOH) 2), for enhanced adsorption and selectivity of CO2 and N2 ”, Journal of Chemical & Engineering Data, Vol 60, 2152-2161, 2015.
[28] V. Bon, I. Senkovska, M. S. Weiss, S. Kaskel, “Tailoring of network dimensionality and porosity adjustment in Zr-and Hf-based MOFs ”, CrystEngComm, Vol 15, 9572-9577, 2013.
[29] Q. Yang, V. Guillerm, F. Ragon, A. D. Wiersum, P. L. Llewellyn, C. Zhong, T. Devic, C. Serre, G. Maurin, “CH4 storage and CO2 capture in highly porous zirconium oxide based metal–organic frameworks ”, Chemical Communications, Vol 48, 9831-9833, 2012.
[30] Y. He, R. Krishna, B. Chen, “Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons ”, Energy & Environmental Science, Vol 5, 9107, 2012.
[31] L. Li, S. Tang, C. Wang, X. Lv, M. Jiang, H. Wu, X. Zhao, “High gas storage capacities and stepwise adsorption in a UiO type metal–organic framework incorporating Lewis basic bipyridyl sites ”, Chemical Communications, Vol 50, 2304-2307, 2014.
[32] J. Hu, Y. Liu, J. Liu, C. Gu, D. Wu, “Effects of incorporated oxygen and sulfur heteroatoms into ligands for CO2/N 2 and CO 2/CH 4 separation in metal-organic frameworks: A molecular simulation study ”, Fuel, Vol 226, 591-597, 2018.
[33] J. J. Potoff, J. I. Siepmann, “Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen ”, AIChE Journal, Vol 47, 1676-1682, 2001.
[34] C. Murthy, K. Singer, M. Klein, I. McDonald, “Pairwise additive effective potentials for nitrogen ”, Molecular Physics, Vol 41, 1387-1399, 1980.
[35] J. Jiang, S. I. Sandler, “Separation of CO2 and N2 by adsorption in C168 schwarzite: a combination of quantum mechanics and molecular simulation study ”, Journal of the American Chemical Society, Vol 127, 11989-11997, 2005.
[36] M. G. Martin, J. I. Siepmann, “Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes ”, The Journal of Physical Chemistry B, Vol 102, 2569-2577, 1998.
[37] F. Darkrim, D. Levesque, “Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes ”, The Journal of Chemical Physics, Vol 109, 4981-4984, 1998.
[38] S. E. Wenzel, M. Fischer, F. Hoffmann, M. Fröba, “Highly Porous Metal-Organic Framework Containing a Novel Organosilicon Linker− A Promising Material for Hydrogen Storage ”, Inorganic Chemistry, Vol 48, 6559-6565, 2009.
[39] J. o. Pires, M. s. L. Pinto, V. K. Saini, “Ethane selective IRMOF-8 and its significance in ethane–ethylene separation by adsorption ”, ACS applied materials & interfaces, Vol 6, 12093-12099, 2014.
[40] Y. Chen, H. Wu, D. Lv, R. Shi, Y. Chen, Q. Xia, Z. Li, “Highly adsorptive separation of ethane/ethylene by an ethane-selective MOF MIL-142A ”, Industrial & Engineering Chemistry Research, Vol 57, 4063-4069, 2018.
[41] Y. Chen, Z. Qiao, H. Wu, D. Lv, R. Shi, Q. Xia, J. Zhou, Z. Li, “An ethane-trapping MOF PCN-250 for highly selective adsorption of ethane over ethylene ”, Chemical Engineering Science, Vol 175, 110-117, 2018.
[42] “Sorption 7.0; Dassault System BIOIVA; San Diego ”,
[43] “Adsorption Locator 7.0; Dassault System BIOVIA; San Diego ”,
[44] D. M. Young, A. D. Crowell Physical adsorption of gases; Butterworths: 1962.
[45] J. R. Arnold, “Adsorption of gas mixtures. Nitrogen-oxygen on anatase ”, Journal of the American Chemical Society, Vol 71, 104-110, 1949.
[46] T. L. Hill, “Statistical mechanics of adsorption. V. Thermodynamics and heat of adsorption ”, The Journal of Chemical Physics, Vol 17, 520-535, 1949.
[47] S. Brunauer, P. H. Emmett, E. Teller, “Adsorption of gases in multimolecular layers ”, Journal of the American Chemical Society, Vol 60, 309-319, 1938.
[48] R. L. Akkermans, N. A. Spenley, S. H. Robertson, “Monte Carlo methods in materials studio ”, Molecular Simulation, Vol 39, 1153-1164, 2013.
[49] R. Clausius, “Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen ”, Annalen der Physik, Vol 155, 368-397, 1850.
[50] C. A. Trickett, K. J. Gagnon, S. Lee, F. Gándara, H. B. Bürgi, O. M. Yaghi, “Definitive molecular level characterization of defects in UiO‐66 crystals ”, Angewandte Chemie International Edition, Vol 54, 11162-11167, 2015.
[51] J. Pang, S. Yuan, D. Du, C. Lollar, L. Zhang, M. Wu, D. Yuan, H. C. Zhou, M. Hong, “Flexible Zirconium MOFs as Bromine‐Nanocontainers for Bromination Reactions under Ambient Conditions ”, Angewandte Chemie, Vol 129, 14814-14818, 2017.
[52] P. Horcajada, F. Salles, S. Wuttke, T. Devic, D. Heurtaux, G. Maurin, A. Vimont, M. Daturi, O. David, E. Magnier, “How linker’s modification controls swelling properties of highly flexible iron (III) dicarboxylates MIL-88 ”, Journal of the American Chemical Society, Vol 133, 17839-17847, 2011.
[53] R. J. Duchovic, W. L. Hase, H. B. Schlegel, “Analytic function for the atomic hydrogen+ methyl. dblarw. methane (H+ CH3. dblarw. CH4) potential energy surface ”, The Journal of Physical Chemistry, Vol 88, 1339-1347, 1984.
[54] F. Guo, Y. Liu, J. Hu, H. Liu, Y. Hu, “Classical density functional theory for gas separation in nanoporous materials and its application to CH4/H2 separation ”, Chemical Engineering Science, Vol 149, 14-21, 2016.
[55] S. Yeganegi, V. Sokhanvaran, “Adsorption of hydrogen and methane on intrinsic and alkali metal cations-doped Zn2(NDC)2(diPyTz) metal–organic framework using GCMC simulations ”, Adsorption, Vol 22, 277-285, 2016.
[56] Z. Sumer, S. Keskin, “Adsorption-and Membrane-Based CH4/N2 Separation Performances of MOFs ”, Industrial & Engineering Chemistry Research, Vol 56, 8713-8722, 2017.
[57] B. Zhou, W. Li, J. Zhang, “Theoretical Simulation of CH4 Separation from H2 in CAU-17 Materials ”, The Journal of Physical Chemistry C, Vol 121, 20197-20204, 2017.
[58] C. D. Wick, M. G. Martin, J. I. Siepmann, “Transferable potentials for phase equilibria. 4. United-atom description of linear and branched alkenes and alkylbenzenes ”, The Journal of Physical Chemistry B, Vol 104, 8008-8016, 2000.
[59] S. L. Mayo, B. D. Olafson, W. A. Goddard, “DREIDING: a generic force field for molecular simulations ”, The Journal of Physical Chemistry, Vol 94, 8897-8909, 1990.
[60] A. K. Rappé, C. J. Casewit, K. Colwell, W. A. Goddard III, W. Skiff, “UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations ”, Journal of the American Chemical Society, Vol 114, 10024-10035, 1992.
[61] H. Lorentz, “Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase ”, Annalen Der Physik, Vol 248, 127-136, 1881.
[62] A. K. Pabby, S. S. Rizvi, A. M. S. Requena, Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications; CRC press, 2008.
[63] Q. Yang, A. D. Wiersum, H. Jobic, V. Guillerm, C. Serre, P. L. Llewellyn, G. Maurin, “Understanding the thermodynamic and kinetic behavior of the CO2/CH4 gas mixture within the porous zirconium terephthalate UiO-66 (Zr): a joint experimental and modeling approach ”, The Journal of Physical Chemistry C, Vol 115, 13768-13774, 2011.
[64] A. D. Wiersum, E. Soubeyrand‐Lenoir, Q. Yang, B. Moulin, V. Guillerm, M. B. Yahia, S. Bourrelly, A. Vimont, S. Miller, C. Vagner, “An evaluation of UiO‐66 for gas‐based applications ”, Chemistry–An Asian Journal, Vol 6, 3270-3280, 2011.
[65] Y. He, N. A. Seaton, “Monte Carlo simulation and pore-size distribution analysis of the isosteric heat of adsorption of methane in activated carbon ”, Langmuir, Vol 21, 8297-8301, 2005.
[66] P. Q. Liao, W. X. Zhang, J. P. Zhang, X. M. Chen, “Efficient purification of ethene by an ethane-trapping metal-organic framework ”, Nature Communications, Vol 6, 8697, 2015.
指導教授 謝介銘 張博凱(Chieh-Ming Hsieh Bor Kae Chang) 審核日期 2019-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明