博碩士論文 106324041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.191.88.249
姓名 陳志宗(Jhih-Zong Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 甲基水楊酸異構物於超臨界二氧化碳中之溶解度量測
相關論文
★ 預測固體溶質於超臨界二氧化碳添加共溶劑系統之溶解度★ 碳酸二乙酯與低碳醇類於常壓下之汽液相平衡
★ 探討Peng-Robinson+COSMOSAC狀態方程式中分散項與溫度之關係★ 探討分散項之溫度函數與體積參數之修正對PR+COSMOSAC於相平衡預測之影響
★ 預測有機物與二氧化碳雙成份系統之固液氣三相平衡★ 常壓下乙酸酯類之雙成份混合物汽液相平衡
★ 以第一原理計算鋰嵌入與擴散於具氧空缺之二氧化鈦結構★ 探討不同量子化學方法對PR+COSMOSAC狀態方程式應用於預測純物質及混合流體相行為之影響
★ 預測固體溶質於超臨界二氧化碳中的溶解度★ 鋯金屬有機框架材料之碳氫氣體吸附與分離預測
★ 原料藥與水楊酸衍生物於超臨界二氧化碳中之溶解度量測★ 以第一原理計算探討鋰於鈮摻雜二氧化鈦之嵌入與擴散路徑
★ 探討COSMO-SAC-dsp模型中分散項和組合項之效應★ 第一原理計算探討藍磷烯異質結構用於鋰離子電池負極材料之特性
★ 以第一原理計算探討鋰離子於鐵摻雜磷酸鋰鈷之塊材與表面附近之擴散路徑★ 利用分子結構快速估算藥物與染料分子於超臨界二氧化碳中之溶解度
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-6-30以後開放)
摘要(中) 本研究建立一套半流動式裝置用於量測不同溫度(308.2 K、318.2 K、328.2 K)及壓力(90 ~ 185 bar)條件下甲基水楊酸異構物於超臨界二氧化碳中之溶解度數據,研究之固體溶質為:水楊酸、3-甲基水楊酸、4-甲基水楊酸。其中水楊酸在308.2K下之溶解度量測實驗目的在於驗證實驗設備與手法的可行性,並以相同實驗設備及手法量測3-甲基水楊酸與4-甲基水楊酸之溶解度實驗數據。在取得溶解度實驗數據後,利用由結合律為基礎的半經驗式模型—Chrastil model、由稀釋溶液理論出發推演的Mendez-Santiago and Teja model以及多參數模型進行回歸計算,皆能得到良好回歸結果。本研究亦使用Chrastil model與Mendez-Santiago and Teja model進行數據自身一致性測試,以確認實驗數據具一致性。
摘要(英) In this study, the solid solubility of the isomers of methylsalicylic acid in supercritical carbon dioxide was measured using a semi-flow type apparatus at different temperature (308.2 K、318.2 K、328.2 K) over the pressure range from 90 to 185 bar. The solid solutes studied in this work were salicylic acid, 3-methylsalicylic acid, and 4-methylsalicylic acid. The solubility of salicylic acid in supercritical carbon dioxide at 308.2 K was measured to validate the reliability of the apparatus and experimental procedures. The result of salicylic acid shows a well satisfactory agreement with experimental data reported in literature. Using the same apparatus and experimental procedures, the solubility of 3-methylsalicylic acid and 4-methylsalicylic acid were successfully obtained and correlated by three semi-empirical models, Chrastil model, Mendez Santiago and Teja model (MST model), and multi-parameter model. The consistency of solubility data was confirmed by the good correlation results obtained with Chrastil model and MST model.
關鍵字(中) ★ 甲基水楊酸
★ 超臨界二氧化碳
★ 溶解度
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 v
表目錄 vi
第一章 緒論 1
1-1 超臨界流體簡介 1
1-2 超臨界二氧化碳之應用 3
1-3 固體於超臨界二氧化碳中之溶解度 5
1-4 研究動機 6
第二章 實驗部分 7
2-1 藥品 7
2-2 實驗裝置 9
2-3 實驗操作 13
2-4 成分分析 15
2-5 數據處理與回歸 18
第三章 理論部分 25
3-1 半經驗式模型 25
3-2 數據自身一致性測試 27
第四章 結果與討論 28
4-1 檢量線之擬合 28
4-2 可靠性實驗數據 32
4-3 甲基水楊酸異構物溶解度數據 36
第五章 結論 48
參考文獻 49
參考文獻 [1]. Joseph M. DeSimone and William Tumas, Green chemistry using liquid and supercritical carbon dioxide., Oxford University Press., 2003.
[2]. Douglas A. Skoog, F. James Holler, and Stanley R. Crouch, Principles of instrumental analysis., 7 ed., Cengage Learning., 2016.
[3]. Ram B. Gupta and Jae-Jin Shim, Solubility in supercritical carbon dioxide., CRC Press., 2007.
[4]. Hulya Peker, et al., “Caffeine extraction rates from coffee beans with supercritical carbon dioxide”, AlChE J., Vol 38, pp. 761-770, 1992.
[5]. Peter Hubert and Otto G. Vitzthum, “Fluid extraction of hops, spices, and tobacco with supercritical gases”, Angew. Chem. Int. Ed. Engl., Vol 17, pp. 710-715, 1978.
[6]. Koichiro Saga and Takeshi Hattori, “Wafer cleaning using supercritical CO2 in semiconductor and nanoelectronic device fabrication”, Solid State Phenom., Vol 134, pp. 97-103, 2008.
[7]. Katrin C. Müllers, Maria Paisana, and Martin A. Wahl, “Simultaneous formation and micronization of pharmaceutical cocrystals by rapid expansion of supercritical solutions (RESS)”, Pharm. Res., Vol 32, pp. 702-713, 2015.
[8]. Can Quan, et al., “Generation of superhydrophobic paper surfaces by a rapidly expanding supercritical carbon dioxide–alkyl ketene dimer solution”, J. Supercrit. Fluids, Vol 49, pp. 117-124, 2009.
[9]. Ram B. Gupta and Keith P. Johnston, Perry′s chemical engineers′ handbook. section 20, 8 ed., McGraw-Hill, 2007.
[10]. Jheng-Ming Ciou, et al., “Measurement of solid solubility of warfarin in supercritical carbon dioxide and recrystallization study using supercritical antisolvent process”, Adv. Powder Technol., Vol 29, pp. 479-487, 2018.
[11]. António B. S. Rosa, et al., “Solubility of all-trans retinoic acid in supercritical carbon dioxide”, J. Supercrit. Fluids, Vol 98, pp. 70-78, 2015.
[12]. Yasin Khayyat, Sohrab Moradi Kashkouli, and Feridun Esmaeilzadeh, “Solubility of fluvoxamine maleate in supercritical carbon dioxide”, Fluid Phase Equilib., Vol 399, pp. 98-104, 2015.
[13]. Philip A. Mackowiak, “Brief history of antipyretic therapy”, Clin. Infect. Dis., Vol 31, pp. S154-S156, 2000.
[14]. Baptiste Bouillot, Sébastien Teychené, and Béatrice Biscans, “An evaluation of thermodynamic models for the prediction of drug and drug-like molecule solubility in organic solvents”, Fluid Phase Equilib., Vol 309, pp. 36-52, 2011.
[15]. Arpita Roy, et al., “5-Methyl salicylic acid-induced thermo responsive reversible transition in surface active ionic liquid assemblies: a spectroscopic approach”, Langmuir, Vol 32, pp. 7127-7137, 2016.
[16]. Kurt N. Von Kaulla and Gordon Ens, “On structure-related properties of synthetic organic clot-dissolving (thrombolytic) compounds”, Biochem. Pharmacol., Vol 16, pp. 1023-1034, 1967.
[17]. Stéphane Moreau, et al., “(2-Arylhydrazonomethyl)-substituted xanthones as antimycotics: synthesis and fungistatic activity against Candida species”, Eur. J. Med. Chem., Vol 37, pp. 237-253, 2002.
[18]. Guozhang Xu, et al., “Solid-phase synthesis of the alkenyldiarylmethane (ADAM) series of non-nucleoside HIV-1 reverse transcriptase inhibitors”, J. Org. Chem., Vol 66, pp. 5958-5964, 2001.
[19]. Ji-Ping Zhang, et al., “Inhibitory effects of salicylic acid family compounds on the diphenolase activity of mushroom tyrosinase”, Food Chem., Vol 95, pp. 579-584, 2006.
[20]. Ru Yan, et al., “Synthesis, biological evaluation and molecular modeling studies of Schiff bases derived from 4-methylsalicylic acid as potential immunosuppressive agents”, Med. Chem. Res., Vol 22, pp. 5707-5716, 2013.
[21]. Nevil Vincent Sidgwick and Elinor Katharine Ewbank, “CVII.—The influence of position on the solubilities of the substituted benzoic acids”, J. Chem. Soc., Trans., Vol 119, pp. 979-1001, 1921.
[22]. Roland Span and Wolfgang Wagner, “A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa”, J. Phys. Chem. Ref. Data, Vol 25, pp. 1509-1596, 1996.
[23]. JCGM 100:2008, Evaluation of measurement data — Guide to the expression of uncertainty in measurement (GUM 1995 with minor corrections), 1 ed., Joint Committee for Guides in Metrology, 2008.
[24]. Barry N. Taylor and Chris E. Kuyatt, Guidelines for evaluating and expressing the uncertainty of NIST measurement results, U.S. Government Printing Office, Washington, DC, 1994.
[25]. S L R Ellison and A Williams, Eurachem/CITAC guide: Quantifying uncertainty in analytical measurement, 3 ed., 2012.
[26]. J. Kragten, “Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique”, Analyst, Vol 119, pp. 2161-2165, 1994.
[27]. Thomas W Vetter. Quantifying measurement uncertainty in analytical chemistry–A simplified practical approach. in Measurement Science Conference. 2001. Anaheim, CA: National Institute of Standards and Technology (NIST).
[28]. Josef Chrastil, “Solubility of solids and liquids in supercritical gases”, J. Phys. Chem., Vol 86, pp. 3016-3021, 1982.
[29]. Janette Méndez-Santiago and Amyn S. Teja, “The solubility of solids in supercritical fluids”, Fluid Phase Equilib., Vol 158-160, pp. 501-510, 1999.
[30]. M. D. Gordillo, et al., “Solubility of the antibiotic Penicillin G in supercritical carbon dioxide”, J. Supercrit. Fluids, Vol 15, pp. 183-190, 1999.
[31]. Aicha Belghait, et al., “Semi-empirical correlation of solid solute solubility in supercritical carbon dioxide: comparative study and proposition of a novel density-based model”, C. R. Chim., Vol 21, pp. 494-513, 2018.
[32]. David J. Miller, et al., “Solubility of polycyclic aromatic hydrocarbons in supercritical carbon dioxide from 313 K to 523 K and pressures from 100 bar to 450 bar”, J. Chem. Eng. Data, Vol 41, pp. 779-786, 1996.
[33]. Keith D. Bartle, Anthony A. Clifford, and Saad A. Jafar, “Measurement of solubility in supercritical fluids using chromatographic retention: the solubility of fluorene, phenanthrene, and pyrene in carbon dioxide”, J. Chem. Eng. Data, Vol 35, pp. 355-360, 1990.
[34]. Keith P. Johnston, David H. Ziger, and Charles A. Eckert, “Solubilities of hydrocarbon solids in supercritical fluids. the augmented van der Waals treatment”, Ind. Eng. Chem. Fundam., Vol 21, pp. 191-197, 1982.
[35]. Enping Yu, et al., “Solubilities of polychlorinated biphenyls in supercritical carbon dioxide”, Ind. Eng. Chem. Res., Vol 34, pp. 340-346, 1995.
[36]. K. C. Pitchaiah, et al., “Experimental measurements and correlation of the solubility of N,N-dialkylamides in supercritical carbon dioxide”, J. Supercrit. Fluids, Vol 143, pp. 162-170, 2019.
[37]. Hongru Li, et al., “Determination, correlation and prediction of the solubilities of niflumic acid, clofenamic acid and tolfenamic acid in supercritical CO2”, Fluid Phase Equilib., Vol 392, pp. 95-103, 2015.
[38]. Jose A. P. Coelho, et al., “Solubilities of C-tetraalkylcalix[4]resorcinarenes in SCCO2: experimental measurements, characterization, and correlation”, J. Chem. Eng. Data, Vol 60, pp. 909-918, 2015.
[39]. Tzu-Chi Wang and Ping-Yen Lee, “Measurement and correlation for the solid solubility of antioxidants d-isoascorbic acid and calcium l-ascorbate dihydrate in supercritical carbon dioxide”, J. Chem. Eng. Data, Vol 59, pp. 613-617, 2014.
[40]. Gurdev S. Gurdial and Neil R. Foster, “Solubility of o-hydroxybenzoic acid in supercritical carbon dioxide”, Ind. Eng. Chem. Res., Vol 30, pp. 575-580, 1991.
[41]. J. Ke, et al., “Solubilities of salicylic acid in supercritical carbon dioxide with ethanol cosolvent”, J. Supercrit. Fluids, Vol 9, pp. 82-87, 1996.
[42]. Simon Bristow, Boris Y. Shekunov, and Peter York, “Solubility analysis of drug compounds in supercritical carbon dioxide using static and dynamic extraction systems”, Ind. Eng. Chem. Res., Vol 40, pp. 1732-1739, 2001.
[43]. Shobha Ravipaty, Karl J. Koebke, and David J. Chesney, “Polar mixed-solid solute systems in supercritical carbon dioxide: entrainer effect and its influence on solubility and selectivity”, J. Chem. Eng. Data, Vol 53, pp. 415-421, 2008.
[44]. Eldred H. Chimowitz, Introduction to critical phenomena in fluids, Oxford University Press., USA, 2005.
[45]. Sivamohan N. Reddy and Giridhar Madras, “Mixture solubilities of nitrobenzoic acid isomers in supercritical carbon dioxide”, J. Supercrit. Fluids, Vol 70, pp. 66-74, 2012.
[46]. Jing-Wei Chen and Fuan-Nan Tsai, “Solubilities of methoxybenzoic acid isomers in supercritical carbon dioxide”, Fluid Phase Equilib., Vol 107, pp. 189-200, 1995.
[47]. Hongju Chang and Dennis G. Morrell, “Solubilities of methoxy-1-tetralone and methyl nitrobenzoate isomers and their mixtures in supercritical carbon dioxide”, J. Chem. Eng. Data, Vol 30, pp. 74-78, 1985.
[48]. Val J. Krukonis and Ronald T. Kurnik, “Solubility of solid aromatic isomers in carbon dioxide”, J. Chem. Eng. Data, Vol 30, pp. 247-249, 1985.
[49]. 鄭光煒、陳延平, “化工熱力學在超臨界技術上之研究”, 台大工程學刊, pp. 45-57, 2002.
[50]. 王博誠,「華法林與依普黃酮於超臨界二氧化碳中固體溶解度與微粒化之研究」,國立臺北科技大學,碩士論文,2015。
[51]. 簡智翔,「共溶劑對β-胡蘿蔔素於超臨界二氧化碳溶解度影響之研究」,國立中央大學,碩士論文,2004。
[52]. 蘇至善,「藥物固體於超臨界二氧化碳中溶解度與微粒化之研究」,國立臺灣大學,博士論文,2007。
[53]. Chie-Shaan Su and Yan-Ping Chen, “Measurement and correlation for the solid solubility of non-steroidal anti-inflammatory drugs (NSAIDs) in supercritical carbon dioxide”, J. Supercrit. Fluids, Vol 43, pp. 438-446, 2008.
[54]. Xiaoxue Zhang, Saara Heinonen, and Erkki Levänen, “Applications of supercritical carbon dioxide in materials processing and synthesis”, RSC Adv., Vol 4, pp. 61137-61152, 2014.
[55]. Mojtaba Shamsipur, et al., “Solubility determination of nitrophenol derivatives in supercritical carbon dioxide”, J. Supercrit. Fluids, Vol 23, pp. 225-231, 2002.
指導教授 謝介銘 審核日期 2019-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明