博碩士論文 106324042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.228.21.204
姓名 謝承志(Cheng-Zhi Xie)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 組成變異對脂質膜之動態行為及其與胜肽間交互作用之影響
(THE EFFECTS OF COMPOSITIONAL VARIATIONS ON THE MEMBRANE DYNAMICS AND MEMBRANE-PEPTIDE INTERACTION)
相關論文
★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討★ 脂質組成成分對細胞膜物理性質與生物功能的影響
★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響
★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性
★ CoCrFeMnNi 高熵合金 形變行為之探討★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用
★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化
★ 發展量測雙層脂質膜的排列密度之實驗技術★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響
★ 開發預測雙子型界面活性劑之自組裝結構的方法★ 抗肌萎縮蛋白的膜結合錨如何影響其與脂質膜的相互作用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-10-1以後開放)
摘要(中) 細胞膜為細胞之重要胞器之一。此主要由磷脂質、蛋白質,及碳水化合物組成之膜狀結構亦構成了細胞隔絕外來有害物質之第一道屏障。做為與外界環境作用之關鍵胞器,細胞膜之物理性質如軟硬度、相態、動態行為、及對胜肽作用等皆受膜組成成分影響。在以上性質中,探討後兩者能對了解某些神經相關疾病之機制做出貢獻。細胞膜之動態行為也容易隨著膜組成變動而受到影響。磷脂質之親水頭基與疏水碳氫鏈若產生改變,會影響不同尺度膜運動行為之運動速度如膜波動或膜內脂質分子運動等。除了膜動態性質外,本研究亦利用澱粉樣胜肽β作為媒介以更了解細胞膜與胜肽間作用;根據先前文獻指出阿茲海默症可能為澱粉樣胜肽β之寡聚體及患者腦部氧化共同作用下造成。由氧化造成之膜內碳氫鏈變異,對澱粉樣胜肽β如何與神經細胞膜作用可能會是決定性因素。我們從中子自旋回聲及準彈性中子散射之實驗結果得知,脂質膜之動態行為受到碳氫鏈飽和度變異之影響甚劇:脂質分子之碳氫鏈飽和度較高,脂質分子在膜內之運動速度會降低;而在我們之觀察範圍內,頭基變異對整體膜動態行為只造成些微影響。在胜肽對膜作用方面,我們亦發現澱粉樣胜肽β寡聚體對膜作用與氧化引發之膜組成變異以及銅離子有關。根據我們小角度X光散射以及寡聚體螢光檢測之數據,澱粉樣胜肽β寡聚體之貼附行為會引起氧化後之脂質膜外層之明顯結構變化;然而,我們卻沒有從脂質膜完整性實驗中觀察到任何由澱粉樣胜肽β寡聚體引發之脂質膜上缺陷或孔洞,且氧化後之脂質膜在與澱粉樣胜肽β寡聚體作用後亦維持其原本之完整性;由此可知,此交互作用應為非破壞性作用。整體而言,脂質膜之組成變異無論對膜動態行為及胜肽與膜作用都有顯著之影響:若脂質膜之飽和度上升,其在膜內之分子運動速度將變慢;而由氧化引發之碳氫鏈裂解、飽和度上升也使澱粉樣胜肽β寡聚體對脂質膜作用更顯著。由此可知,膜之飽和度是影響脂質膜動態行為以及胜肽對膜作用之關鍵因素。
摘要(英) Cell membranes are an essential portion for cells to operate functionally, keep the viability of organisms, and hold abilities to receive, resist, or interact with molecules outside cells. Among the diverse properties of membranes, composition is a crucial one for their biological functions; the rigidity, phases, dynamics, and interaction with peptides are highly related to it. Among these aspects, exploring the latter two may contribute to the understanding of the mechanisms of some neurological diseases. Because of the mobility difference of lipids, compositional variations would modulate membrane dynamics in various spatial scales. On the other hand, we employed amyloid β peptides (Aβ) to investigate the membrane-peptide interaction. According to previous studies, Alzheimer’s disease could be the combined result of Aβ aggregation and oxidative stress, and Aβ-membrane interactions could be different once the composition of membranes was varied by the hydrocarbon chain oxidation. From our inelastic neutron scattering results, we found that membrane dynamics in various spatial scales were highly related to lipids’ molecular configuration in hydrocarbon chains but not in head groups. On the Aβ-membrane interaction aspects, we found that the interaction between membranes and Aβ aggregates was highly related to membrane compositions and the presence of Cu2+. From X-ray scattering and fluorescence data, we knew that Aβ oligomers would provide structural impacts on outer leaflets of membranes by Aβ attachments and shallow insertions. However, membranes retained their structural integrity after the interaction with Aβ aggregates, and compositional variations from oxidative treatments also could not affect the integrity of lipid membranes in the event of Aβ oligomers-membrane interaction. Altogether, we find that the increase of saturation degrees affected their dynamics in wide spatial scales and carry out the structure-disrupting membrane-peptide interactions.
關鍵字(中) ★ 細胞膜
★ 膜組成
★ 組成變異
★ 膜動態
★ 非彈性中子散射
★ 澱粉樣胜肽β
關鍵字(英) ★ cell membrane
★ membrane composition
★ compositional variation
★ membrane dynamics
★ inelastic neutron scattering
★ amyloid β
論文目次 中文摘要 I
ABSTRACTS III
致謝 V
TABLE OF CONTENTS VII
LIST OF FIGURES IX
CHAPTER 1 INTRODUCTION 1
1-1. Lipid Membranes 1
1-1-1. Cell membranes 1
1-1-2. Artificial lipid membranes 3
1-1-3. Lipid membrane peroxidation 5
1-1-4. Membrane-reactive agents 7
1-2. Amyloid β Peptides 8
1-3. Membrane Dynamics 11
1-3-1. Membrane undulation motions 11
1-3-2. Lipid molecular motions 13
1-4. Compositional Variations 15
1-5. Motivation 16
CHAPTER 2 MATERIALS AND METHODS 17
2-1. Materials 17
2-1-1. Phospholipids 17
2-1-2. Peptides 24
2-1-3. General chemicals 26
2-2. Methods 27
2-2-1. Large unilamellar vesicle (LUV) preparation 27
2-2-2. Mulit-lamellar vesicle (MLV) preparation 28
2-2-3. Oligolamellar vesicle (OLV) preparation 28
2-2-4. Oxidized liposome preparation 30
2-2-5. Dye-containing liposome preparation 30
2-2-6. Peptide preparation 30
2-3. Experimental Principal 33
2-3-1. Fluorescence assay 33
2-3-1-1. ThT fluorescence 34
2-3-1-2. CCA fluorescence 34
2-3-1-3. TBA fluorescence 35
2-3-1-4. Fura-2 fluorescence 36
2-3-2. Elastic scattering 37
2-3-2-1. Dynamic light scattering (DLS) 37
2-3-2-2. Small angle x-ray scattering (SAXS) 38
2-3-3. Inelastic scattering 40
2-3-3-1. Neutron spin echo (NSE) 40
2-3-3-2. Quasi-elastic neutron scattering (QENS) 41
2-3-4. UV-vis absorption 42
2-4. Data Analysis 44
2-4-1. Fluorescence intensity spectrum 44
2-4-1-1. ThT spectrum deconvolution 44
2-4-1-2. Membrane integrity 45
2-4-2. Membrane thickness and electron density profiles 45
2-4-3. Inelastic scattering data processing 47
2-4-3-1. Dispersion relation 47
2-4-3-2. Dynamic parameter characterization 52
CHAPTER 3 RESULTS 54
3-1. The Dynamics of Lipid Membranes with Different Compositions 54
3-1-1. The undulation motion of lipid membranes with different composition 54
3-1-2. The dispersion relation and group velocity of lipid membranes 58
3-1-3. The molecular motion within lipid membranes 61
3-1-4. The molecular dispersion relation and dynamic characterization 66
3-2. The Interaction Between Aβ Aggregates And Membrane After Oxidation 71
3-2-1. The properties of liposomes after oxidation 71
3-2-2. The aggregation of Aβ in the presence membranes with compositional variations after oxidation 73
3-2-3. The structural disruption of membranes from Aβ and Aβ-Cu2+ complexes 76
3-2-4. The membrane integrity investigation with Aβ aggregates 85
CHAPTER 4 DISCUSSION 87
4-1. The Overall Membrane Dynamics 87
4-2. The Interaction between Aβ Oligomers and Membranes with Compositional Variations Induced by Oxidation 90
4-3. The Relation between Membrane Integrity and Aβ Attachments 94
CHAPTER 5 CONCLUSIONS 95
REFERECE 97
APPENDIX 102
參考文獻 Agmon, E., Solon, J., Bassereau, P., Stockwell, B. R. Modeling the effects of lipid peroxidation during ferroptosis on membrane properties. Scientific Reports, 2018, 8 (1).
Armstrong, C. L., Kaye, M. D., Zamponi, M., Mamontov, E., Tyagi, M., Jenkins, T., Rheinstädter, M. C. Diffusion in single supported lipid bilayers studied by quasi-elastic neutron scattering. Soft Matter, 2010, 6 (23), 5864.
Armstrong, C. L., Trapp, M., Peters, J., Seydel, T., Rheinstädter, M. C. Short range ballistic motion in fluid lipid bilayers studied by quasi-elastic neutron scattering Soft Matter, 2011, 7, 8358–8362.
Bhatia, T., Husen, P., Brewer, J., Bagatolli, L. A., Hansen, P. L., Ipsen, J. H., Mouritsen, O. G. Preparing giant unilamellar vesicles (GUVs) of complex lipid mixtures on demand: Mixing small unilamellar vesicles of compositionally heterogeneous mixtures Biochimica et Biophysica Act, 2015, 1848, 3175–3180.
Blesa, J., Trigo-Damas, I., Quiroga-Varela, A., Jackson-Lewis, V. R. Oxidative stress and Parkinson’s disease Front. Neuroanat, 2015, 9 (19).
Borghesani, V., Alies, B., Hureau, C. CuII Binding to Various Forms of Amyloid-β Peptides: Are They Friends or Foes? European Journal of Inorganic Chemistry, 2017, 2018 (1), 7–15.
Boughter, C. T., Monje-Galvan, V., Im, W., Klauda, J. B. Influence of Cholesterol on Phospholipid Bilayer Structure and Dynamics. The Journal of Physical Chemistry B, 2016, 120 (45), 11761–11772.
Boyd, E. S., Hamilton, T. L., Wang, J., He, L., Zhang, C. L. The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity Front. Microbiol, 2013, 4 (62), 1-15.
Bradley, R. P., Radhakrishnan, R. Curvature–undulation coupling as a basis for curvature sensing and generation in bilayer membranes PNAS, 2016, 113 (35), 5117-5124.
Braun, A. R., Brandt, E. G., Edholm, O., Nagle, J. F., Sachs, J. N. Determination of Electron Density Profiles and Area from Simulations of Undulating Membranes Biophysical journal, 2011, 100, 2112-2120.
Brazhe, N. A., Nikelshparg, E. I., Prats, C., Dela, F., Sosnovtseva, O. Raman probing of lipids, proteins, and mitochondria in skeletal myocytes: a case study on obesity Journal of Raman Spectroscopy, 2017, 48 (9), 1158-1165.
Brüning, B.-A., Prévost, S., Stehle, R., Steitz, R., Falus, P., Farago, B., Hellweg, T. Bilayer undulation dynamics in unilamellar phospholipid vesicles: Effect of temperature, cholesterol and trehalose. Biochimica et Biophysica Acta, 2014, 1838 (10), 2412–2419.
Burté, F., Carelli, V., Chinnery, P. F., Yu-Wai-Man, P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nature Reviews Neurology, 2014, 11 (1), 11–24.
Busch, S., Smuda, C., Pardo, L. C.,Unruh, T.Molecular Mechanism of Long-Range Diffusion in Phospholipid Membranes Studied by Quasielastic Neutron Scattering. Journal of the American Chemical Society, 2010, 132 (10), 3232–3233.
Cheignon, C., Faller, P., Testemale, D., Hureau, C., Collin, F. Metal-catalyzed oxidation of Aβ and the resulting reorganization of Cu binding sites promote ROS production Metallomics, 2016, 8, 1081-1089.
Chemburu, S., Fenton, K., Lopez, G. P., Zeineldin, R. Biomimetic Silica Microspheres in Biosensing. Molecules, 2010, 15 (3), 1932–1957.
Cournia, Z., Allen, T. W., Andricioaei, I., et al. Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory. The Journal of Membrane Biology, 2015, 248 (4), 611-640.
Detmer, S. A., Chan, D. C. Functions and dysfunctions of mitochondrial dynamics. Nature Reviews Molecular Cell Biology, 2007, 8 (11), 870–879.
Gao, J., Wang, L., Liu, J., Xie, F., Su, B., Wang, X. Abnormalities of Mitochondrial Dynamics in Neurodegenerative Diseases. Antioxidants, 2017, 6 (2), 25.
Gaschler, M. M., Stockwell, B. R. Lipid peroxidation in cell death. Biochemical and Biophysical Research Communications, 2017, 482 (3), 419-425.
Ha, D., Yang N., Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharmaceutica Sinica B, 2016, 6 (4), 287-296.
Hellstrand, E., Sparr, E., Linse, S. Retardation of Aβ Fibril Formation by Phospholipid Vesicles Depends on Membrane Phase Behavior. Biophysical Journal, 2010, 98 (10), 2206–2214.
Hu, X., Zhang, Q., Wang, W., Yuan, Z., Zhu, X., Chen, B., Chen, X. Tripeptide GGH as the Inhibitor of Copper-Amyloid-β-Mediated Redox Reaction and Toxicity. ACS Chemical Neuroscience, 2016, 7 (9), 1255–1263.
Ingólfsson, H. I., Carpenter, T. S., Bhatia, H., Bremer, P.-T., Marrink, S. J., Lightstone, F. C. Computational Lipidomics of the Neuronal Plasma Membrane Biophysical Journal, 2017, 113 (10), 2271-2280.
Jensen, M., Canning, A., Chiha, S., Bouquerel, P., Pedersen, J. T., et al. Inhibition of Cu-Amyloid-β by using Bifunctional Peptides with β-Sheet Breaker and Chelator Moieties. Chemistry-A European Journal, 2012, 18 (16), 4836-4839.
Kagan, V. E. Lipid peroxidation in biomembranes, 2018.
Kittel, C. Introduction to Solid State Physics, 2013.
Kulkarni, C. V. Lipid crystallization: from self-assembly to hierarchical and biological ordering. Nanoscale, 2012, 4, 5779-5791.
Li, J., Jiao, A., Chen, S., Wu, Z., Xu, E., Jin, Z. Application of the small-angle X-ray scattering technique for structural analysis studies: A review. Journal of Molecular Structure, 2018, 1165, 391–400.
Maity, H., Wei, A., Chen, E., Haidar, J. N., Srivastava, A., Goldstein, J. Comparison of predicted extinction coefficients of monoclonal antibodies with experimental values as measured by the Edelhoch method. International Journal of Biological Macromolecules, 2018, 77, 260–265.
Mell, M., Moleiro, L. H., Hertle, Y., Fouquet, P., Schweins, R., López-Montero, I. et al., Bending stiffness of biological membranes: What can be measured by neutron spin echo? The European Physical Journal E, 2013, 36 (7).
Mishra, B., Reiling, S., Zarena, D., Wang, G. Host defense antimicrobial peptides as antibiotics: design and application strategies. Current Opinion in Chemical Biology, 2017, 38, 87-96.
Nagao, M., Kelley, E. G., Ashkar, R., Bradbury, R., Butler, P. D. Probing Elastic and Viscous Properties of Phospholipid Bilayers Using Neutron Spin Echo Spectroscopy The Journal of Physical Chemistry Letters, 2017, 8 (19), 4679–4684.
Pabst, G., Koschuch, R., Pozo-Navas, B., Rappolt, M., Lohner, K., Laggner, P. Structural analysis of weakly ordered membrane stacks. Journal of Applied Crystallography, 2003, 36 (6), 1378–1388.
Pan, J., Cheng, X., Sharp, M., Ho, C.-S., Khadka, N., Katsaras, J. (2015). Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations. Soft Matter, 2015, 11 (1), 130–138.
Pham, A. N., Xing, G., Miller, C. J., Waite, T. D. Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. Journal of Catalysis, 2013, 301, 54–64.
Salimi, R., Yener, N., Safari, R. Use and Evaluation of Newly Synthesized Fluorescence Probes to Detect Generated OH• Radicals in Fibroblast Cells. Journal of Fluorescence, 2016, 26 (3), 919–924.
Sani, M.-A., Gehman, J. D., Separovic, F. Lipid matrix plays a role in Abeta fibril kinetics and morphology. FEBS Letters, 2011, 585 (5), 749–754.
Sciacca, M. F. M., Kotler, S. A., Brender, J. R., Chen, J., Lee, D., Ramamoorthy, A. Two-Step Mechanism of Membrane Disruption by Aβ through Membrane Fragmentation and Pore Formation. Biophysical Journal, 2012, 103 (4), 702–710.
Serra-Batiste, M., Ninot-Pedrosa, M., Bayoumi, M., Gairí, M., Maglia, G., Carulla, N. Aβ42 assembles into specific β-barrel pore-forming oligomers in membrane-mimicking environments PNAS, 2016, 113 (39), 10866-10871.
Sezgin, E., Levental, I., Mayor, S., Eggeling, C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nature Reviews Molecular Cell Biology, 2017, 18, 361-374.
Suárez-Rivero, J., Villanueva-Paz, M., de la Cruz-Ojeda, P., de la Mata, M., Cotán, D., Oropesa-Ávila, M., et al. Mitochondrial Dynamics in Mitochondrial Diseases. Diseases, 2017, 5 (1), 1.
Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry, 2017, 524, 13–30.
Van der Paal, J., Neyts, E. C., Verlackt, C. C. W., Bogaerts, A. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chemical Science, 2016, 7 (1), 489–498.
Wanderlingh, U., D’Angelo, G., Branca, C., Conti Nibali, V., Trimarchi, A., Rifici, S., Finocchiaro, D., Crupi, C., J. Ollivier, Middendorf, H. D. Multi-component modeling of quasielastic neutron scattering from phospholipid membranes. The Journal of Chemical Physics, 2014, 140 (17), 174901.
Woodka, A. C., Butler, P. D., Porcar, L., Farago, B., Nagao, M. Lipid Bilayers and Membrane Dynamics: Insight into Thickness Fluctuations Phys. Rev. Lett., 2012, 109.
Yusupov, M., Wende, K., Kupsch, S., Neyts, E. C., Reuter, S., Bogaerts, A. Effect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experiments. Scientific Reports, 2017, 7 (1).
指導教授 陳儀帆(Yi-Fan Chen) 審核日期 2019-10-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明