博碩士論文 106324045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.226.245.48
姓名 陳冠聿(Kuan-Yu Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質
(Using copper foam as anode current collector with different flow field for Zn-based batteries)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 奈米結構之Au/MnO2複合陰極觸媒材料★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材
★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究
★ IMPS於Ag-In-S半導體薄膜之分析與應用★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性
★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究
★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質★ 電化學分解水之電極材料製備與效率探討
★ 金屬氧化物與硫化物異質結構薄膜之電化學研究★ 噴霧熱裂解法製備Zn-doped n-type CuInS2 薄膜及其光電化學性質分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 以發泡銅網作為鋅空氣電池之負極集電網搭配流場電解液可有效避免鋅枝狀晶於充電反應中產生,並可提高電極之電化學效能。在此研究中,電化學表現的測定均是在以6 M KOH 加入 0.3 M ZnO組成之電解液中施加特定大小之電解液流場速度(RPM)下進行。在鋅沉積形貌的測定部分,使用不同大小之充電電流密度對電極進行充電30分鐘,由SEM觀測結果可知,施加了電解液流場的實驗組相對於未施加流場的實驗組能有效在較高的充電電流密度下避免鋅枝狀晶的產生。另外在循環伏安法測試可看出,施加了電解液流場的實驗組具有較高的氧化電流與庫倫效率,代表電解液流場的施加能有效地提升電極的放電效能。在定電流充放電測試中,以100 mA/cm2之電流密度進行充放電,施加了電解液流場的實驗組有較好的放電效率與循環穩定性,由於發泡銅網具有高比表面積與較高的孔隙度,施加流場的電解液可有效地進入發泡銅網內部,並利用發泡銅網內部面積進行電化學反應,有效電化學反應的增加使每單位面積所分配到的實際電流密度下降,經由以上實驗結果可以說明,發泡銅網在儲能裝置上的應用具有相當大的潛力。
摘要(英) Using copper foam as the current collector in a flowing electrolyte for Zn-air secondary batteries could inhibit dendrite formation and enhance electrochemical performance. In this work, electrochemical analysis was conducted in an alkaline electrolyte composed of 6 M KOH with 0.3 M ZnO under a constant flow field. Zinc was electrodeposited on copper foam at different current density for 30 minutes; the SEM images showed that with the flowing electrolyte, copper foam can be used for Zn plating at a higher current density without dendrite formation. According to the results of cyclic voltammetry, the anodic peak and coulombic efficiency with high rotation speed (RPM) of magnetic stirrer was higher than that without stirring. It indicated that copper foam with flow field electrolyte had a better discharge performance. Constant current density, 100 mA/cm2, was applied for the charge/discharge cyclic test. Copper foam with flow field electrolyte exhibited a better discharge efficiency and superior cycle stability. Because of the high porosity and large specific surface area, the inner area of copper foam could be fully used with the flow field electrolyte. The real current density per unit area decreased and the space of copper foam for zinc deposition increased. Based on these results, it is evident that copper foam shows a high potential as the current collector for energy storage applications.
關鍵字(中) ★ 鋅空氣電池
★ 發泡銅網
★ 電解液流場
關鍵字(英) ★ Zn-air batteries
★ Cu foam
★ flow field electrolyte
論文目次 目錄
摘要 I
ABSTRACT II
誌謝 IV
目錄 VI
圖目錄 X
表目錄 XV
第一章、緒論 1
1-1 前言 1
1-2 研究動機 4
第二章、文獻回顧 7
2-1 鋅空氣電池的工作原理 7
2-2 鋅空氣電池的發展 10
2-3 二次鋅空氣電池負極的困境 14
2-3-1 鋅枝狀晶的生長機制 15
2-3-2 電極形貌的改變 17
2-3-3 鈍化層及電池內電阻的產生 19
2-3-4 氫氣還原 20
2-4 鋅空氣電池的負極改良策略 22
2-4-1 發泡金屬網的使用 26
2-4-2 添加聚合物黏著劑 30
2-4-3 電極添加劑 31
2-4-4 電解液組成與添加劑 34
2-4-5 電極改質 37
2-4-6 實驗條件控制 39
2-5 鋅的電沉積樣貌 42
2-6 銅基材的優勢 46
第三章、實驗方法與步驟 48
3-1 實驗藥品與器材 48
3-1-1 實驗藥品 48
3-1-2 實驗儀器與器材 49
3-2 實驗步驟 50
3-2-1 發泡銅網前處理 50
3-2-2 電化學測試裝置 51
3-2-3 電解液液流系統 52
3-3 材料鑑定分析 52
3-3-1 X光繞射儀分析 (X-ray Diffraction, XRD) 52
3-3-2 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 52
3-4 電化學分析 53
3-4-1 表面形貌分析 53
3-4-2 枝狀晶生長極限電流 53
3-4-3 循環伏安法 (Cyclic voltammetry, CV) 53
3-4-4 循環穩定性測試 54
3-4-5 抗腐蝕性測試 54
第四章、結果與討論 55
4-1 材料分析鑑定 55
4-1-1 X光繞射分析 55
4-1-2 鋅沉積樣貌 56
4-2 循環伏安法 60
4-2-1 循環伏安圖 60
4-2-2 庫侖效率 63
4-3 鋅枝狀晶生長之極限電流 65
4-4 循環充放電測試 73
4-4-1 放電曲線圖 73
4-4-2 循環效率 76
4-5 發泡銅網之抗腐蝕性測試 78
4-5-1 塔佛曲線圖 78
第五章、結論 80
附錄 82
參考文獻 87


圖目錄
圖1-1-1 全球電力逐年消耗量(至2016年底)。 3
圖1-1-2 全球鋅金屬蘊含量(統計至2018年底,單位:百萬噸) [1]。 3
圖1-2-1 常見之二次金屬空氣電池之理論能量密度比較圖 [2]。 6
圖1-2-2樹枝狀晶刺穿隔離膜之示意圖。 6
圖2-1-1 二次鋅空氣電池工作原理示意圖 [2]。 9
圖2-2-1 以鋅為負極之電池發展演變 [6]。 12
圖2-2-2 平面鋅空氣電池示意圖 [2]。 12
圖2-2-3 液流鋅空氣電池示意圖 [2]。 13
圖2-2-4可撓式鋅空氣電池示意圖 [2]。 13
圖2-3-1 鋅電極面臨的問題示意圖 (a) 鋅枝狀晶的生長 (b) 電極形貌的改變 (c) 極化層及電池內電阻的產生 (d) 氫氣還原 [2]。 14
圖2-3-2 電解液導電度、Zn/Zn2+交換電流密度及ZnO溶解度對氫氧化鉀濃度關係圖 [6] [21] [22]。 18
圖2-4-1 不同形貌之金屬鋅 [6]。 23
圖2-4-2 微米級球狀與針狀鋅金屬 [28]。 24
圖2-4-3 纖維狀鋅金屬 [29]。 24
圖2-4-4 負極材料之孔隙度對導電度之比較圖 [29]。 25
圖2-4-5 3D海綿狀鋅電極的照片(左圖)與SEM圖(中圖及右圖) [30]。 28
圖2-4-6 一般鋅粉電極與3D海綿狀鋅電極的充放電循環示意圖 [30]。 28
圖2-4-7 鎳片與發泡鎳網於不同電流下的庫倫效率(CE)、電壓效率(VE)與能源效率(EE)比較 [32]。 29
圖2-4-8 Zn-Al氧化物粉末的SEM及TEM形貌圖 [47]。 33
圖2-4-9 Zn-Al氧化物粉末的合成及浸入電解液的反應示意圖 [47]。 33
圖 2-4-10 於電解液中添加不同添加劑之陰極極化曲線(ZnOPa為磷酸;ZnOSa為琥珀酸;ZnOTa為酒石酸;ZnOCa為檸檬酸) [50]。 35
圖 2-4-11 於電解液中添加不同添加劑後鋅的SEM形貌圖(a)未添加(b)磷酸(c)琥珀酸(d)酒石酸(e)檸檬酸 [50]。 36
圖2-4-12 充放電100圈後鋅電極SEM形貌圖 (a) 表面有聚苯胺塗層之鋅電極 (b) 未改質之鋅電極 (c) 表面有聚苯胺塗層之鋅電極之橫截面圖(x100) (d) 表面有聚苯胺塗層之鋅電極之橫截面圖(x500) [52]。 38
圖2-4-13 充放電100圈之電容量變化 (cell-P:已改質;cell-B:未改質) [52]。 38
圖2-4-14 在40mA/cm2電流密度下鍍鋅,脈衝週期(a) 10 msec通電流,10 msec 停止 (b) 10 msec 通電流,8 msec 停止 (c) 10 msec通電流,4 msec 停止 [54]。 40
圖 2-4-15 在8 M 氫氧化鉀添加0.5 M氧化鋅之電解液下以不同溫度與電解液流動速度對鋅枝狀晶生長情形作圖 [55]。 41
圖2-5-1 鋅沉積的不同形貌 [6]。 44
圖2-5-2 (a)不同電流密度 (b)不同鋅酸鹽濃度 (c)不同電解液黏度 與鋅沉積樣貌對比圖(●苔狀 ▲苔狀及緊密結構 ▓緊密結構) [57]。 44
圖2-5-3 不同條件下鋅沉積樣貌對比圖 [13]。 45
圖 2-6-1 發泡鎳網與發泡銅網的線性掃描伏安法測試比較圖 [57]。 47
圖 2-6-2 電池未使用下發泡鎳網鋅電極與發泡銅網鋅電極蓄電量與存放時間關係圖 [57]。 47
圖3-2-1 三極式電化學裝置圖。 51
圖4-1-1 清洗後的市售發泡銅網之XRD圖譜。 55
圖4-1-2 發泡銅網與固定電流密度為120 mA/cm2下鍍鋅30分鐘,不同轉速下之鋅沉積形貌 (a) 發泡銅網 (b) 無轉速 (c) 300 rpm (d) 450 rpm (e) 600 rpm (f) 750 rpm (g) 900 rpm。 58
圖4-1-3 固定轉速450 rpm下以不同電流密度鍍鋅30分鐘之鋅沉積樣貌 (a) 100 mA/cm2 (b) 150 mA/cm2 (c) 200 mA/cm2。 59
圖4-2-1 發泡銅網於組成為6 M KOH與0.3 M ZnO之電解液中,搭配不同電解液流場之循環伏安法結果 (a) 0 rpm (b) 300 rpm (c) 450 rpm (d) 600 rpm (e) 750 rpm (f) 900 rpm。 62
圖4-2-2 發泡銅網於不同轉速之電解液流場下,循環伏安法掃描之各圈庫倫效率值。 64
圖4-3-1 發泡銅網於不同電流密度與轉速下,充電電荷對電流密度分布圖。 66
圖4-3-2 發泡銅網在靜止電解液下鍍鋅30分鐘,電流密度40 mA/cm2 (a) 100x (b) 400x,電流密度60 mA/cm2 (c) 100x (d) 400x。 67
圖4-3-3 發泡銅網在300 rpm下鍍鋅30分鐘,電流密度140 mA/cm2 (a) 100x (b) 400x,電流密度200 mA/cm2 (c) 100x (d) 400x。 68
圖4-3-4 發泡銅網在450 rpm下鍍鋅30分鐘,電流密度140 mA/cm2 (a) 100x (b) 400x,電流密度220 mA/cm2 (c) 50x (d) 400x。 69
圖4-3-5 發泡銅網在600 rpm下鍍鋅30分鐘,電流密度160 mA/cm2 (a) 100x (b) 400x,電流密度220 mA/cm2 (c) 100x (d) 400x。 70
圖4-3-6 發泡銅網在750 rpm下鍍鋅30分鐘,電流密度160 mA/cm2 (a) 100x (b) 400x,電流密度220 mA/cm2 (c) 100x (d) 400x。 71
圖4-3-7 發泡銅網在900 rpm下鍍鋅30分鐘,電流密度180 mA/cm2 (a) 100x (b) 400x,電流密度240 mA/cm2 (c) 100x (d) 400x。 72
圖4-4-1 發泡銅網於電解液 (a) 無流場 (b) 300 rpm (c) 450 rpm (d) 600 rpm (e) 750 rpm (f) 900 rpm下,以100 mA/cm2之電流密度進行充電10分鐘後,放電至-1V之電壓對電容圖。 75
圖4-4-2 發泡銅網於不同轉速下以100 mA/cm2之電流密度進行充電10分鐘後,放電至-1V之充放電效率圖。 77
圖4-5-1 發泡銅網與已鍍鋅之發泡銅網之塔佛曲線圖。 79
圖A-1 發泡銅網於6 M KOH中之循環伏安法結果。 83
圖A-2 已鍍鋅之發泡銅網於6 M KOH 與450 rpm流場下之塔佛曲線圖。 83
圖A-3發泡銅網於不同電位區間之循環伏安法結果 (a) 0 rpm (b) 450 rpm。 84
圖A-4 濃度邊界層模型示意圖 [58]。 84
圖A-5 發泡銅網於300 rpm流場下,以160 mA/cm2之電流密度進行充電10分鐘後,放電至-1V之電壓對電容圖。 86


表目錄
表3-1-1 化學藥品清單 48
表3-1-2 儀器與器材清單 49
表4-3-1 發泡銅網於不同電流密度與轉速下,充電電荷對電流密度分布 67
表4-5-1 發泡銅網與已鍍鋅之發泡銅網之開路電位、腐蝕電位與腐蝕電流值 73
參考文獻 [1] United States Geological Survey, Mineral commodity summaries 2019, 2019.
[2] J. Fu, Z. Cano, M. Park, A. Yu, M. Fowler, and Z. Chen, "Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives," Advanced materials, vol. 29, 2017.
[3] J. Lee, S. Kim, R. Cao, N. Choi, M. Liu, K. Lee, and J. Cho, "Metal‐air batteries: metal–air batteries with high energy density: Li–air versus Zn–air," Advanced energy materials, vol. 1, p. 2, 2011.
[4] M. Arafat Rahman, X. Wang, and C. Wen, "High energy density metal-air batteries: a review," Journal of the Electrochemical Society, vol. 160, pp. A1759-A1771, 2013.
[5] H. Pang, P. Gu, M. Zheng, Q. Zhao, X. Xiao, and H. Xue, "Rechargeable zinc–air batteries: a promising way to green energy," Journal of Materials Chemistry A, vol. 5, pp. 7651-7666, 2017.
[6] X. Zhang, "Zinc-electrodes: overview," Encyclopedia of Electrochemical Power Sources, vol. 5, pp. 454-568, 2009.
[7] T. Reddy, Linden’s handbook of batteries, fourth edition, 2010.
[8] W. Hong, H. Li, and B. Wang, "A horizontal three-electrode structure for zinc-air batteries with long-term cycle life and high performance," International Journal of Electrochemical Science, vol. 11, pp. 3843 - 3851, 2016.
[9] J. Park, M. Park, G. Nam, J. Lee, and J. Cho, "All-solid-state cable-type flexible zinc–air battery," Advanced material, vol. 27, p. 1396–1401, 2015.
[10] J. W. Diggle, A. R. Despic, and J. O′M. Bockris, "The mechanism of the dendritic electrocrystallization of zinc," Journal of The Electrochemical Society, vol. 116, pp. 1503-1504, 1969.
[11] R. V. MOSHTEV, and P. ZLATILOVA, "Kinetics of growth of zinc dendrite precursors in zincate solutions," JOURNAL OF APPLIED ELECTROCHEMISTRY, vol. 8, pp. 213-222, 1978.
[12] M. Simičić, K. Popovb, and N. Krstajić, "An experimental study of zinc morphology in alkaline electrolyte at low direct and pulsating overpotentials," Journal of Electroanalytical Chemistry, vol. 484, pp. 18-23, 2000.
[13] R. Wang, D. Kirk, and G. Zhang, "Effects of deposition conditions on the morphology of zinc deposits from alkaline zincate solutions," Journal of The Electrochemical Society, vol. 153, pp. C357-C364, 2006.
[14] K. Popov, and N. Krstajic, "The mechanism of spongy electrodeposits formation on inert substrate at low over potentials," Journal of Applied Electrochemistry, vol. 13, p. 775–782, 1983.
[15] A. Despić and M. Purenović, "Critical overpotential and induction time of dendritic growth," Journal of The Electrochemical Society, vol. 121, pp. 329-335, 1974.
[16] J. McBreen, "Zinc electrode shape change in secondary cells," Journal of The Electrochemical Society, vol. 119, pp. 1620-1628, 1972.
[17] F. McLarnon, and E. Cairns, "The secondary alkaline zinc electrode," Journal of The Electrochemical Society, vol. 138, pp. 645-656, 1991.
[18] Y. Shen, and K. Kordesch, "The mechanism of capacity fade of rechargeable alkaline manganese dioxide zinc cells," Journal of Power Sources, vol. 87, pp. 162-166, 2000.
[19] E. Deiss, F. Holzer, and O. Haas, "Modeling of an electrically rechargeable alkaline Zn–air battery," Electrochimica Acta, vol. 47, pp. 3995-4010, 2002.
[20] W. Sunu, and D. Bennion, "Transient and failure analyses of the porous zinc electrode," Journal of The Electrochemical Society, vol. 127, pp. 2007-2016, 1980.
[21] T. Dirkse, and N. Hampson, "The Zn(II)/Zn exchange reaction in KOH solution—II. exchange current density measurements using the double-impulse method," Electrochimica Acta, vol. 17, pp. 383-386, 1972.
[22] R. Gilliama, J. Graydonb, D. Kirkb, and S. Thorpe, "A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures," International Journal of Hydrogen Energy, vol. 32, pp. 359-364, 2007.
[23] S. Yi, C. Jung, T. Kim, and W. Kim, "Computational analysis of the zinc utilization in the primary zinc-air batteries," Energy, vol. 102, pp. 694-704, 2016.
[24] T. Chang, Y. Wang, and C.Wan, "Structural effect of the zinc electrode on its discharge performance," Journal of Power Sources, vol. 10, pp. 167-177, 1983.
[25] C. Lee, S. Eom, K. Sathiyanarayanan, and M. Yun, "Preliminary comparative studies of zinc and zinc oxide electrodes on corrosion reaction and reversible reaction for zinc/air fuel cells," Electrochimica Acta, vol. 52, pp. 1588-1591, 2006.
[26] R. Durkot, L. Lin and P. Harris, "Zinc electrode particle form". 2001.
[27] A. Oyama, T. Odahara, S. Fuchino, M. Shinoda and H. Shimomura, "Process for producing zinc or zinc alloy powder for battery". 2004.
[28] H. Ma, C. Li, Y. Su, and J. Chen, "Studies on the vapour-transport synthesis and electrochemical properties of," Journal of Materials Chemistry, vol. 17, pp. 684-691, 2006.
[29] X. Zhang, "Fibrous zinc anodes for high power batteries," Journal of Power Sources, vol. 163, pp. 591-597, 2006.
[30] J. F. Parker, C. N. Chervin, E. S. Nelson, and D. R. Rolison*, "Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling," Energy & Environmental Science, vol. 7, pp. 1117-1124, 2014.
[31] M. Chamoun, B. Hertzberg, T. Gupta, D. Davies, S. Bhadra, B. Tassell, C. Erdonmez, and D. Steingart, "Hyper-dendritic nanoporous zinc foam anodes," NPG Asia Materials, vol. 7, pp. e178-e185, 2015.
[32] Y. Cheng, H. Zhang, Q. Lai, X. Li, D. Shi, and L. Zhang, "A high power density single flow zincenickel battery with three-dimensional porous negative electrode," Journal of Power Sources, vol. 241, pp. 196-202, 2013.
[33] O. Haas, F. Holzer, K. Müller, and S. Müller, Handbook of Fuel Cells, John Wiley & Sons, 2010.
[34] P. Bonnick, and J. Dahn, "A simple coin cell design for testing rechargeable zinc-air or alkaline battery systems," Journal of the Electrochemical Society, vol. 159, pp. A981-A989, 2012.
[35] R. Othman, A. Yahaya,and A. Arof, "A zinc–air cell employing a porous zinc electrode fabricated from zinc–graphite-natural biodegradable polymer paste," Journal of Applied Electrochemistry, vol. 32, pp. 1347-1353, 2002.
[36] M. Masri, and A. Mohamad, "Effect of adding potassium hydroxide to an agar binder for use as the anode in Zn–air batteries," Corrosion Science, vol. 51, pp. 3025-3029, 2009.
[37] J. Fu, D. Lee, F. Hassan, L. Yang, Z. Bai, M. Park, and Z. Chen, "Flexible high‐energy polymer‐electrolyte‐based rechargeable zinc–air batteries," Advanced materials, vol. 27, pp. 5617-5622, 2015.
[38] H. Li, C. Xu, C. Han, Y. Chen, C. Wei, B. Li, and F. Kang, "Enhancement on cycle performance of Zn anodes by activated carbon modification for neutral rechargeable zinc ion batteries," Journal of the Electrochemical Society, vol. 162, pp. A1439-A1444, 2015.
[39] J. Fu, J. Zhang, X. Song, H. Zarrin, X. Tian, J. Qiao, L. Rasen, K. Li, and Z. Chen, "A flexible solid-state electrolyte for wide-scale integration of rechargeable zinc–air batteries," Energy & Environmental Science, vol. 9, pp. 663-670, 2016.
[40] F. Moser, F. Fourgeot, R. Rouget, O. Crosnier, and T. Brousse, "In situ X-ray diffraction investigation of zinc based electrode in Ni–Zn secondary batteries," Electrochimica Acta, vol. 109, pp. 110-116, 2013.
[41] C. Biegler, R. Deutscher, S. Fletcher, S. Hua, and R. Woods, "Accelerated testing of additives in zinc plates of nickel zinc cells," Journal of the Electrochemical Society, vol. 130, pp. 2303-2309, 1983.
[42] J.McBreen, and E.Gannon, "Bismuth oxide as an additive in pasted zinc electrodes," Journal of Power Sources, vol. 15, pp. 169-177, 1985.
[43] J.McBreen, and E.Gannon, "The electrochemistry of metal oxide additives in pasted zinc electrodes," Electrochimica Acta, vol. 26, pp. 1439-1446, 1981.
[44] M. Yano, S. Fujitani, K. Nishio, Y. Akai, and M.Kurimura, "Effect of additives in zinc alloy powder on suppressing hydrogen evolution," Journal of Power Sources, vol. 74, pp. 129-134, 1998.
[45] Y. Wang, and G. Wainwright, "Formation and decomposition kinetic studies of calcium zincate in 20   w / o KOH ," Journal of the Electrochemical Society, vol. 133, pp. 1869-1872, 1986.
[46] R. Jain, T. Adler, F. McLarnon, and E. Cairns, "Development of long-lived high-performance zinc-calcium/nickel oxide cells," Journal of Applied Electrochemistry, vol. 22, pp. 1039-1048, 1992.
[47] J. Huang, Z. Yang, R. Wang, Z. Zhang, Z. Feng, and X. Xie, "Zn–Al layered double oxides as high-performance anode materials for zinc-based secondary battery," Journal of Materials Chemistry A, vol. 3, pp. 7429-7436, 2015.
[48] J. Parker, I. Pala, C. Chervin, J. Long, and D. Rolison, "Minimizing shape change at Zn sponge anodes in rechargeable Ni–Zn cells: impact of electrolyte formulation," Journal of the Electrochemical Society, vol. 163, pp. A351-A355, 2016.
[49] G. E, "Effect of ten weight percent  KOH  electrolyte on the durability of zinc/nickel oxide cells containing zinc electrodes with calcium hydroxide," Journal of the Electrochemical Society, vol. 138, pp. 3173-3176, 1991.
[50] C. Lee, K. Sathiyanarayanan, S. Eoma, H. Kima, and M. Yun, "Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives," Journal of Power Sources, vol. 159, p. 1474–1477, 2006.
[51] J.Zhu, and Y. Zhou, "Effects of ionomer films on secondary alkaline zinc electrodes," Journal of Power Sources, vol. 73, pp. 266-270, 1998.
[52] J. Vatsalarani, D. Trivedi, K. Ragavendran, and P. Warrier, "Effect of polyaniline coating on “shape change” phenomenon of porous zinc electrode," Journal of the Electrochemical Society, vol. 152, pp. A1974-A1978, 2005.
[53] Y. Yuana, L. Yub, H. Wuc, J. Yanga, Y. Chena, S. Guoa, and J.P. Tu, "Electrochemical performances of Bi based compound film-coated ZnO as anodic materials of Ni–Zn secondary batteries," Electrochimica Acta, vol. 56, p. 4378–4383, 2011.
[54] S. Arouete, K. Blurton, and H. Oswin, "Controlled current deposition of zinc from alkaline solution," Journal of the Electrochemical Society, vol. 116, pp. 166-169, 1969.
[55] A. L. C. Z. B. G. a. A. W. A. Gavrilović-Wohlmuther, "Effects of electrolyte concentration, temperature, flow velocity and current density on Zn deposit morphology," Journal of Energy and Power Engineering, vol. 9, pp. 1019-1028, 2015.
[56] Y. Ito, X. Wei, D. Desai, D. Steingart, and S. Banerjee, "An indicator of zinc morphology transition in flowing alkaline electrolyte," Journal of Power Sources, vol. 211, pp. 119-128, 2012.
[57] G. Sun, Z. Yan, E. Wang, and L. Jianga, "Superior cycling stability and high rate capability of three-dimensional Zn/Cu foam electrodes for zinc-based alkaline batteries," RSC Advances, vol. 5, pp. 83781-83787, 2015.
[58] J. R. Welty, G. L. Rorrer, and D. G. Foster, Fundamentals of momentum, heat and mass transfer sixth edition, John Wiley & Sons, 2015.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2019-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明