博碩士論文 106324046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.207.240.230
姓名 李芍樺(Shao-Hua Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以萃取劑改質樹脂自含鎵之鹽酸浸漬液中回收鎵之模擬研究
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著半導體產業的蓬勃發展,產生許多電子工業廢棄物如含氮化鎵發光二極體(LED)廢晶圓,由於國內對於鎵金屬回收技術尚不足,且對鎵資源的缺乏,本模擬研究探討如何從含鎵廢料中回收鎵。
本研究以萃取劑改質樹脂(D2EHPA/ XAD-4)進行浸漬液中鎵離子之離子交換以回收鎵。模擬採用Aspen Plus之Chromatography模組進行研究開發,以Extended Langmuir Isotherm描述其等溫平衡吸附曲線,再以固相Linear Lumped Resistance質傳阻力模型描述其吸附質傳阻力,因平衡吸附量測實驗與連續管柱實驗之操作方式不同,會影響其吸附效率,故以動力學實驗數據先行概估吸附量修正因子(fads)之大約數值。再以模擬分別驗證純鎵離子溶液、純鋁離子溶液、純鎵離子加純鋁離子混合溶液、與實際浸漬廢料稀釋溶液實驗數據,求得符合程度最佳之各離子吸脫附質傳係數(MTC)與吸附量修正因子(fads),以確認程式及參數的可靠度。接著探討離子交換循環操作程序之各項變因對其鋁對鎵之重量比(Al/ Ga wt. ratio)及鎵回收率的影響,研究最適化的操作條件,以獲得低鋁對鎵之重量比與高鎵回收率。變因探討後得操作條件為吸附步驟時間240分鐘、脫附步驟時間2010分鐘、吸附步驟流量0.002 L/ min、脫附步驟流量0.002 L/ min、離子交換塔塔徑1.6公分與填充樹脂高度10公分。此操作條件下可得鋁對鎵之重量比為0.679%,鎵回收率達82.67%。
摘要(英) With the advance of semi-conductor industry, a great amount of industrial waste material, such as scraped GaN-containing wafer, has been produced. Due to the shortage of Ga resources and the lack of ability to recycle Ga metal, the Ga recycling simulation had been developed in this study.
In this work, extractant-modified resin (D2EHPA/ XAD-4) had been used to recycle Ga ions in the ion exchanging process. The Chromatography module of Aspen Plus software was adopted in this research. The isothermal adsorption curve was fitted by extended Langmuir isotherm model while adsorption mass transfer resistance was modeled by Linear Lumped Resistance model. Due to the difference of operating method between isothermal adsorption experiments and ion exchange experiments which may affect the adsorption efficiency, the adsorption correction factor, fads, was estimated by the data of dynamics experiments in advance. The simulation of ion exchange experiments of pure Ga3+ solution, pure Al3+ solution, mixture of Ga3+ and Al3+ solution, and real waste dilute solution have been developed and fitted to the experimental data. The simulating program and parameters can be verified by the corresponding mass transfer coefficient and adsorption correction factor of the adsorption mentioned above. In order to obtain lower Al to Ga weight ratio and higher Ga recovery, several variables were discussed to find the best operating conditions. The finial operating conditions are adsorption step time 240 min, desorption step time 2010 min, adsorption flow rate 0.002 L/min, desorption flow rate 0.002 L/ min, bed diameter 1.6 cm, and height of resin layer 10 cm. The simulation results are 0.679% Al to Ga wt. ratio and 82.67% Ga recovery.
關鍵字(中) ★ 離子交換
★ 鎵回收
★ Aspen Chromatography
關鍵字(英) ★ Ion-exchange
★ Ga recovery
★ Aspen Chromatography
論文目次 摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xviii
第一章、緒論 1
第二章、簡介及文獻回顧 3
2-1 純化方法 3
2-2 離子交換理論 4
2-2-1 離子交換法 4
2-2-2 離子交換樹脂組成與結構 5
2-2-3 離子交換樹脂分類 8
2-2-4 離子交換平衡 17
2-3 離子交換之動力學模式 21
2-3-1 大孔型離子交換樹脂的顆粒內擴散 23
2-3-2 溶液中離子濃度影響離子交換樹脂的顆粒內擴散 26
2-3-3動力學模式 28
2-4 液體的軸向分散係數 29
2-5吸附現象 33
2-5-1 物理吸附與化學吸附 33
2-5-2 等溫平衡吸附模式 34
2-6離子交換樹脂循環操作程序 40
2-7 文獻回顧 46
2-7-1 溶劑-非溶劑法製備萃取劑改質樹脂 46
2-7-2 pH值對金屬離子的物種型態變化 49
2-7-3 ASPEN應用於離子交換反應 52
2-7-4 離子交換樹脂的等溫吸附、吸附動力學與熱力學研究 55
第三章、ASPEN模擬程式設定與參數分析 58
3-1 流程架構 58
3-2 進料物質設定 61
3-3 離子交換管柱設定 65
3-3-1 離子交換管柱模式設定 66
3-3-2 離子交換管柱參數設定 70
3-4 等溫平衡吸附曲線 73
3-5 吸附動力學 76
3-6 循環設定 78
第四章、結果討論與數據分析 79
4-1 離子交換連續管柱實驗與模擬結果驗證 79
4-1-1 純鎵離子溶液之突破實驗與脫附實驗之模擬結果驗證 79
4-1-2 純鋁離子溶液之突破實驗與脫附實驗之模擬結果驗證 84
4-1-3 純鎵離子加純鋁離子混合溶液之突破實驗與脫附實驗之模擬結果驗證 89
4-1-4 實際浸漬廢料稀釋溶液之突破實驗與脫附實驗之模擬結果驗證 94
4-2離子交換循環操作模擬之變因探討 100
4-2-1 吸附步驟時間對循環操作製程之影響 102
4-2-2 脫附步驟時間對循環操作製程之影響 107
4-2-3 吸附步驟流量對循環操作製程之影響 112
4-2-4 脫附步驟流量對循環操作製程之影響 117
4-2-5 離子交換塔塔徑對循環操作製程之影響 122
4-2-6 填充樹脂高度對循環操作製程之影響 125
第五章、結論 129
符號說明 131
參考文獻 135
附錄A、離子交換循環操作程序之穩態過程 140
附錄B、離子交換連續管柱實驗詳細數據 141
附錄C、鎵離子與鋁離子之脫附量變化 156
附錄D、脫附步驟時間大幅減少對循環操作製程之影響 158
參考文獻 [1] U. G. Survey, Mineral commodity summaries 2019, 2019.
[2] G. Rossini, A. M. Bernardes, ”Galvanic sludge metals recovery by pyrometallurgical and hydrometallurgical treatment,” Journal of Hazardous Materials, vol. 131, pp. 210-216, 2006.
[3] B. A. Adams and E. L. Holmes, ”Absorptive properties of synthetic resins,” Journal of the Society of Chemical Industry, vol. 54, pp. 1-6, 1935.
[4] S. Woodard, J. Berry, and B. Newman, ”Ion exchange resin for PFAS removal and pilot test comparison to GAC,” Remediation Journal, vol. 27, pp. 19-27, 2017.
[5] 離子交換樹脂事業部, 三菱化學控股集團, [Online]. Available: https://www.m-hemical.co.jp/cn/products/departments/mcc/ion/index.html.
[6] 楊岳軍, “離子交換樹脂在重金屬廢水處理之應用,” 於 重金屬廢水處理技術研討會,工研院化工所, 新竹, 1989.
[7] T. D. Reynolds and P. Richards, Unit operation and processes in environmental engineering, Boston: Cengage Learning, 1996.
[8] F. G. Helfferich, Ion Exchange, New York: McGraw-Hill, 1962.
[9] W. J. Weber, Physicochemical processes for water quality control, New York: Wiley Interscience, 1972.
[10] S. M. Al-Jubouri and S. M. Holmes, ”Hierarchically porous zeolite X composites for manganese ion-exchange and solidification: Equilibrium isotherms, kinetic and thermodynamic studies,” Chemical Engineering Journal, vol. 308, pp. 476-491, 2017.
[11] A. K. SenGupta, Ion Exchange in Environmental Processes:Fundamentals, Applications and Sustainable Technology, Hoboken: John Wiley & Sons, 2017.
[12] P. Li and A. K. SenGupta, ”Intraparticle diffusion during selective sorption of trace contaminants: the effect of gel versus macroporous morphology,” Environmental Science and Technology, vol. 34, pp. 5193-5200.
[13] C. Wilke and P. Chang, ”Correlation of diffusion coefficients in dilute solutions,” AIChE Journal, vol. 1, pp. 264-270.
[14] H. Y. Chou, L. S. Wu, L. Z. Zeng, and A. Chang, ”Evaluation of solute diffusion tortuosity factor models for variously saturated soils,” Water Resources Research, vol. 48, 2012.
[15] Aspen Technology, Aspen Chromatography user help file, version 10, 2017.
[16] C. Y. Wen and Y. H. Yu, ”Mechanics of Fluidization,” Chemical Engineering Progress Symposium Series, vol. 62, pp. 100-111, 1966.
[17] C. Y. Wen and L. T. Fan, Models for flow systems and chemical reactors, New York: Marcel Dekker, Inc., 1975.
[18] E. J. Cairns and J. M. Prausnitz, ”Longitudinal mixing in packed beds,” Chemical Engineering Science, vol. 12, pp. 20-34, 1960.
[19] H. Freundlich, ”Über die adsorption in lösungen,” Zeitschrift für physikalische Chemie, vol. 57, pp. 385-471, 1907.
[20] I. Langmuir, ”The adsorption of gases on plane surfaces of glass, mica and platinum,” Journal of the American Chemical society, vol. 40, pp. 1361-1403, 1918.
[21] S. Brunauer, P. H. Emmett, and E. Teller, ”Adsorption of gases in multimolecular layers,” Journal of the American Chemical Society, vol. 60, pp. 309-319, 1938.
[22] Y. Glocheux, M. M. Pasarin, A. B. Albadarin, S. J. Allen, and G. M. Walker, ”Removal of arsenic from groundwater by adsorption onto an acidified laterite by-product,” Chemical Engineering Journal, vol. 228, pp. 565-574, 2013.
[23] N. Z. Misak, ”Langmuir isotherm and its application in ion-exchange reactions,” Reactive Polymers, vol. 21, pp. 53-64, 1993.
[24] A. R. Khan, R. Ataullah, and A. Al-Haddad, ”Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures,” Journal of colloid and interface science, vol. 194, pp. 154-165, 1997.
[25] M. E. Mesquita, J. M. Vieira e Silva, ”Preliminary study of pH effect in the application of Langmuir and Freundlich isotherms to Cu–Zn competitive adsorption,” Geoderma, vol. 106, pp. 219-234, 2002.
[26] S. Al-Asheh, F. Banat, R. Al-Omari, Z. Duvnjak, ”Predictions of binary sorption isotherms for the sorption of heavy metals by pine bark using single isotherm data,” Chemosphere, vol. 41, pp. 659-665, 2000.
[27] C. Tien, Adsorption calculations and modelling, Boston: Butterworth-Heinema, 1994.
[28] F. D. Dardel and T. V. Arden, Ion exchangers, Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
[29] J. M. Smith, Chemical engineering kinetics: 3rd edition, New York: McGraw-Hill Higher Education, 1981.
[30] 黃富昌、陳慶和、王宇傑、鄧民有、孫常榮、邱英嘉, 環工單元操作實習, 台北: 文京出版, 1999.
[31] V. C. Taty-Costodes, H. Fauduet, C. Porte, and Y. S. Ho, ”Removal of lead (II) ions from synthetic and real effluents using immobilized Pinus sylvestris sawdust: Adsorption on a fixed-bed column,” Journal of Hazardous Materials, vol. 123, pp. 135-144, 2005.
[32] J. H. Chen, K. C. Hsu, and Y. M. Chang, ”Surface modification of hydrophobic resin with tricaprylmethylammonium chloride for the removal of trace hexavalent chromium,” Industrial & Engineering Chemistry Research, vol. 52, pp. 11685-11694, 2013.
[33] J. H. Chen and C. E. Huang, ”Selective separation of Cu and Zn in the citric acid leachate of industrial printed wiring board sludge by D2EHPA-modified Amberlite XAD-4 resin,” Industrial & Engineering Chemistry Research, vol. 46, pp. 7231-7238, 2007.
[34] Z. Bahri, B. Rezai, and E. Kowsari, ”Selective separation of gallium from zinc using flotation: Effect of solution pH value and the separation mechanism,” Minerals Engineering, vol. 86, pp. 104-113, 2016.
[35] O. V. Cheremisina, M. A. Ponomareva, and V. N. Sagdiev, ”Sorption Recovery of Gallium and Aluminum from Alkaline Solutions on an AN-31 Anion Exchanger,” Russian Journal of Non-Ferrous Metals, vol. 58, pp. 365-372, 2017.
[36] O. Stern, ”Zur theorie der elektrolyischen doppelschicht,” Zeitschrift für Elektrochemie und angewandte physikalische Chemie, vol. 30, pp. 508-516, 1924.
[37] F. Lu, T. Xiao, J. Lin, A. Li, Q. Long, F. Huang, L. Xiao, X. Li, J. Wang, Q. Xiao, and H. Chen, ”Recovery of gallium from Bayer red mud through acidic-leaching-ion-exchange process under normal atmospheric pressure,” Hydrometallurgy, vol. 175, pp. 124-132, 2018.
[38] A. Venkatesan and P. C. Wankat, ”Simulation of ion exchange water softening pretreatment for reverse osmosis desalination of brackish water,” Desalination, vol. 271, pp. 122-132, 2011.
[39] E. C. Cren and A. J. A. Meirelles, ”Oleic acid removal from ethanolic solutions by ion exchange,” Chemical Engineering Journal, vol. 184, pp. 125-131, 2012.
[40] B. S. Hu, H. L. Liu, Y. T. Ge, J. L. Zhao, ”Aspen plus simulation and experimental study on ammonia volatilization process in the production of potassium carbonate by ion-exchange method,” Norganic Chemicals Industry, vol. 39, pp. 39-40, 2007.
[41] D. S. Syahiddin and A. Muslim, ”Adsorption of Cu(II) ions onto myristica fragrans shell-based activated carbon: iotherm, kinetic and thermodynamic studies,” Journal of the Korean Chemical Society, vol. 62, pp. 79-86, 2018.
[42] P. Maneechakr and S. Karnjanakom, ”Adsorption behaviour of Fe(II) and Cr(VI) on activated carbon: Surface chemistry, isotherm, kinetic and thermodynamic studies,” Journal of Chemical Thermodynamics, vol. 106, pp. 104-112, 2017.
[43] Aspen Technology, Aspen plus user guide, version 10.2, 2000.
[44] T. Nakamura, A. Sakai, S. Nishihama, and K. Yoshizuka, ”Solvent extraction of indium, gallium, and zinc ions with acidic organophosphates having bulky alkyl groups,” Solvent Extraction and Ion Exchange, vol. 27, pp. 501-512, 2009.
[45] R. H. Perry and D. W. Green, Perry′s chemical engineers′ handbook, 6th edition, New York: McGraw-Hill, 1985.
[46] E. Nishikata, T. Ishii, and T. Ohta, ”Viscosities of aqueous hydrochloric acid solutions, and densities and viscosities of aqueous hydroiodic acid solutions,” Journal of Chemical & Engineering, vol. 26, pp. 254-256, 1981.
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2020-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明