博碩士論文 106324047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.135.246.193
姓名 林冠汝(Kuan-Ju Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 熱敏性高分子塗佈基材表面設計連續培養系統應用於人類多能性幹細胞之增生
(Design of Thermoresponsive Polymeric Surface for Continuous Culture of Human Pluripotent Stem Cells)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-26以後開放)
摘要(中) 人類多能性幹細胞 (human pluripotent stem cells (hPSCs))因具有自我增生能力以及分化能力,已成為現今再生醫學領域的新星。然而,臨床治療需要極大量的人類多性幹細胞,且典型的細胞培養是費時費力的批次培養。因此此研究設計連續培養系統以解決上述問題。人類胚胎幹細胞培養於熱敏性基材表面,並將溫度降低於熱敏性高分子的低臨界溶解溫度 (lower critical solution temperature (LCST)) 以改變基材表面性質以達到細胞部分脫附效果。未脫附細胞將繼續培養於原熱敏性基材上。
此研究選用聚(N-異丙基丙烯酰胺 - 丙烯酸丁酯)(Poly(N-isopropylacrylamide-co-butylacrylate) (polyNIPAM-BA)) 為培養細胞之熱敏性高分子。研究不同濃度的 polyNIPAM-BA 塗佈於基盤對於溫度控制之地細胞貼附/脫附之影響,並找出最適當的塗佈濃度。並利用X射線光電子能譜儀 (XPS)、原子力顯微鏡 (AFM)以及表面對水接觸角量測等實驗鑑定以不同濃度之polyNIPAM-BA塗佈的基材表面。由細胞脫附實驗可知,最高的脫附率坐落在以8 mg/ml之polyNIPAM-BA塗佈的熱敏性基材。因此選用以8 mg/ml之polyNIPAM-BA塗佈之基材作為長期連續培養條件。
本研究成功將人類多能性幹細胞,包括人類胚胎幹細胞(human embryonic stem cells (hESCs))以及人類誘導性多能性幹細胞(human induced pluripotent stem cells (hiPSCs)),培養於熱敏性基材(polyNIPAM-BA (8 mg/ml)-rVN (5 μg/ml))上,且人類多能性幹細胞可從熱敏性基盤上連續脫附5-7個循環,每個循環可達到60%的脫附率。此外,幹細胞於長期量續培養後保有原有的多功能性以及分化能力。此連續培養方式能簡化幹細胞培養所需之設備。且若此連續培養方式從2D培養方式到3D培養系統,將成為醫學應用於臨床治療領域的一大益處。
摘要(英) Human pluripotent stem cells (hPSCs), having the self-renewal ability and differentiation ability, have become promising candidates for regenerative medicine in these days. However, the number of the cells used for clinic treatment was large and the cell culture process was laborious. To solve these problems, the continuous culture system was developed in this study. hPSCs were cultured on the thermoresponsive surfaces and partially detached the cells by reducing the temperature below the lower critical solution temperature (LCST) of the thermoresponsive polymer. The remaining cells would be cultured in the same dishes by replacing the fresh medium.
Poly(N-isopropylacrylamide-co-butylacrylate) (polyNIPAM-BA) was selected as thermoresponsive polymer for cell cultivation. The various concentration of polyNIPAM-BA was investigated for determining the optimal concentration of polyNIPAM-BA for thermally-modulated cell adhesion/detachment. The different substrate surfaces prepared by coating the various concentration of polyNIPAM-BA were analyzed the surface properties by water contact angle goniometer, X-ray photoelectron spectra (XPS) and atomic force microscope (AFM). According to the thermally-induced cell detachment process, the thermoresponsive surface coated with 8 mg/ml of polyNIPAM-BA showed the highest detachment ratio. Therefore, 8 mg/ml of polyNIPAM-BA was chosen for coated concentration of long-term cultivation substrate.
In this study, hPSCs, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), were successfully cultured on the thermoresponsive substrates (polyNIPAM-BA (8 mg/ml)-rVN (5 μg/ml)) and partially detached from the thermoresponsive surfaces for 5-7 cycles. For each cycle, the partial detachment ratio could reach around 60 %. In addition, the cells indeed retained their pluripotency and differentiation ability after long-term cultivation. This continuous culture system might downsize the equipment requirement. Moreover, shifting two-dimensional culture to three-dimensional culture might be a great benefit for regenerative medicine in clinical treatment in the future.
關鍵字(中) ★ 熱敏性
★ 熱誘導細胞脫附
★ 細胞培養
★ 人類多能性幹細胞
關鍵字(英) ★ Thermoresponsive
★ Thermally-induced cell detachment
★ Cell culture
★ Human pluripotent stem cells
論文目次 摘要 I
Abstract II
致謝 IV
Index of Content V
Index of Figure VIII
Index of Table XV
Chapter 1. Introduction 1
1-1 Stem cells 1
1-1-1 Pluripotent stem cells (PSC) 5
1-1-1-1 Embryonic stem cells (ESCs) 5
1-1-1-2 Induced pluripotent stem cells (iPSCs) 7
1-2 Microenvironment effect on stem cells 9
1-2-1 Extracellular matrix (ECM) 10
1-2-2 Soluble factors 11
1-2-3 Cell-cell interactions 13
1-2-4 Physical surfaces parameters 14
1-2-5 Effect of physiochemical environment on hPSC culture 18
1-3 Conventional cultivation of hPSCs 18
1-3-1 Chemically defined culture medium 19
1-3-2 Chemically defined biomaterials for 2D cultivation 21
1-3-2-1 hPSCs cultured on ECM-immobilized surfaces 23
1-3-2-2 hPSCs culture on oligopeptide-immobilized surfaces 24
1-3-2-3 hPSCS culture on synthetic materials 25
1-3-3 Three dimensional hPSCs cultivation 27
1-4 Smart, thermally-induced biomaterials for bio-application 31
1-4-1 The preparation of thermoresponsive surfaces 32
1-4-2 The properties of thermoresponsive surfaces 35
1-4-3 The application of PIPAAm and its derivatives-modified substrates 39
1-4-3-1 Cells sheet formation 39
1-4-3-2 Cells and biomolecules separation 41
1-4-3-3 3D cell culture system by thermoresponsive microcarriers 43
1-5 Characterization of pluripotent stem cells 45
1-5-1 Colony formation 46
1-5-2 Alkali phosphatase activity 46
1-5-3 Pluripotency evaluation 46
1-5-4 Differentiation ability evaluation 47
1-6 Goal of the study 49
Chapter 2. Materials and Methods 50
2-1 Materials 50
2-1-1 Cell lines 50
2-1-2 Cell culture media, buffer and others 50
2-1-3 Cell culture substrates 51
2-1-4 Materials for hPSCs characterization (Immunostaining and teratoma assay) 52
2-2 Experimental instruments 53
2-3 Methods 54
2-3-1 hPSCs culture and passage procedure 54
2-3-1-1 Cell culture and passage 54
2-3-1-2 Cell cryopreservation 55
2-3-1-3 Cell thawing 55
2-3-2 Preparation procedure of thermoresponsive substrates 56
2-3-2-1 Preparation of two-dimensional thermoresponsive dishes 56
2-3-2-2 Preparation of three-dimensional thermoresponsive microcarriers 57
2-3-3 Substrate surfaces characterization 58
2-3-3-1 Contact angle goniometer (CA) 58
2-3-3-2 X-ray photoelectron spectra (XPS) 58
2-3-3-3 Atomic force microscope (AFM) 59
2-3-4 Continuous cultivation of hPSCs on thermoresponsive substrates 59
2-3-4-1 Continuous cultivation of hPSCs on 2D thermoresponsive dishes 59
2-3-4-2 Continuous cultivation of hPSCs on 3D thermoresponsive microcarriers 62
2-3-5 Characterization of cells growth, pluripotency expression, and differentiation ability in vitro and in vivo 63
2-3-5-1 Cell density measurement 63
2-3-5-2 Expansion fold and doubling time of hPSCs 64
2-3-5-3 Differentiation ratio 65
2-3-5-4 Immunofluorescence staining 65
2-3-5-5 Differentiation ability in vitro assay: Embryo body (EB) formation 68
2-3-5-6 Differentiation ability in vivo assay: teratoma formation 69
Chapter 3. Results and Discussion 70
3-1 Characterization of the thermoresponsive surface 70
3-1-1 X-ray photoelectron spectroscopy (XPS) analysis 70
3-1-2 Water contact angle (CA) analysis 73
3-1-3 Atomic force microscope (AFM) 77
3-2 Continuous culture of hPSCs on the thermoresponsive surfaces 79
3-2-1 The optimal concentration of polyNIPAM-BA for thermal detachment of hPSCs 80
3-2-2 Continuous cultivation of hPSCs on the thermoresponsive surfaces 86
3-2-2-1 hESCs cultured on the thermoresponsive surfaces continuously 87
3-2-2-2 hiPSCs continuously cultured on the thermoresponsive surfaces 91
3-3 Characterization of hPSCs after long-term cultivation on thermoresponsive surface 95
3-3-1 Immunostaining analysis of pluripotency on hPSCs 95
3-3-2 Immunostaining analysis of differentiation ability in vitro 97
3-4 hPSCs cultured on Thermoresponsive microcarriers 99
3-4-1 X-ray photoelectron spectroscopy (XPS) analysis 99
3-4-2 Continuous cultivation of hESCs on thermoresponsive microcarriers 102
Chapter 4. Conclusion 106
References 108
Supplementary Data 120
參考文獻 1. Ratajczak, M.Z., et al., Hunt for pluripotent stem cell - Regenerative medicine search for almighty cell. Journal of Autoimmunity, 2008. 30(3): p. 151-162.
2. Lee, E.H. and J.H.P. Hui, The potential of stem cells in orthopaedic surgery. Journal of Bone and Joint Surgery-British Volume, 2006. 88B(7): p. 841-851.
3. Rosenberg, L.E. and D.D. Rosenberg, Chapter 4 - Growth, Development, and Reproduction, in Human Genes and Genomes, L.E. Rosenberg and D.D. Rosenberg, Editors. 2012, Academic Press: San Diego. p. 27-50.
4. Sugawara, T., et al., Investigating cellular identity and manipulating cell fate using induced pluripotent stem cells. Stem Cell Research & Therapy, 2012. 3: p. 10.
5. Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 2009. 114: p. 185-99.
6. Horie, M. and A. Ito, A Genetically Engineered STO Feeder System Expressing E-Cadherin and Leukemia Inhibitory Factor for Mouse Pluripotent Stem Cell Culture. Journal of Bioprocessing & Biotechniques, 2011. 01(S3).
7. Weissman, I.L., Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000. 100: p. 157-168.
8. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002. 13(12): p. 4279-95.
9. Taylor, R., Human Biotechnology as Social Challenge: An Interdisciplinary Introduction to Bioethics. Human Reproduction and Genetic Ethics 2010. 14(1): p. 40.
10. Singh, V., Squamous Cell Carcinoma of the Kidney – Rarity Redefined: Case Series with Review of Literature. Journal of Cancer Science & Therapy, 2010. 02(04).
11. Majo, F., et al., Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature, 2008. 456(7219): p. 250-4.
12. Blanpain, C., V. Horsley, and E. Fuchs, Epithelial stem cells: turning over new leaves. Cell, 2007. 128(3): p. 445-58.
13. Mitalipov, S. and D. Wolf, Totipotency, Pluripotency and Nuclear Reprogramming, in Engineering of Stem Cells, U. Martin, Editor. 2009, Springer-Verlag Berlin: Berlin. p. 185-199.
14. Hassani, S.N., et al., Transition of inner cell mass to embryonic stem cells: mechanisms, facts, and hypotheses. Cellular and Molecular Life Sciences, 2019. 76(5): p. 873-892.
15. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292.
16. GR., M., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A., 1981. 78(12): p. 7634-7638.
17. Strulovici, Y., et al., Human embryonic stem cells and gene therapy. Mol Ther, 2007. 15(5): p. 850-66.
18. Kang, L., et al., Induced pluripotent stem cells (iPSCs)—a new era of reprogramming. Journal of Genetics and Genomics, 2010. 37(7): p. 415-421.
19. Li, T.S., et al., Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol, 2012. 59(10): p. 942-53.
20. Abbasalizadeh, S. and H. Baharvand, Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnology Advances, 2013. 31(8): p. 1600-1623.
21. Pouton, C.W. and J.M. Haynes, Embryonic stem cells as a source of models for drug discovery. Nature Reviews Drug Discovery, 2007. 6(8): p. 605-616.
22. van Holde, K.E. and J. Zlatanova, Chapter 13 - Development and Differentiation, in The Evolution of Molecular Biology, K.E. van Holde and J. Zlatanova, Editors. 2018, Academic Press. p. 135-147.
23. Ebrahimi, A., et al., Somatic cell reprogramming as a tool for neurodegenerative diseases. Biomedicine & Pharmacotherapy, 2019. 112: p. 6.
24. Sugaya, K. and M. Vaidya, Stem Cell Therapies for Neurodegenerative Diseases, in Exosomes, Stem Cells and Microrna: Aging, Cancer and Age Related Disorders, K.L. Mettinger, P. Rameshwar, and V. Kumar, Editors. 2018, Springer International Publishing Ag: Cham. p. 61-84.
25. Babos, K. and J.K. Ichida, Small Molecules Take a Big Step by Converting Fibroblasts into Neurons. Cell Stem Cell, 2015. 17(2): p. 127-129.
26. Augustyniak, J., et al., Reprogramming of somatic cells: possible methods to derive safe, clinical-grade human induced pluripotent stem cells. Acta Neurobiologiae Experimentalis, 2014. 74(4): p. 373-382.
27. Bindu A, H. and S. B, Potency of Various Types of Stem Cells and their Transplantation. Journal of Stem Cell Research & Therapy, 2011. 01(03).
28. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-676.
29. Kimbrel, E.A. and R. Lanza, Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov, 2015. 14(10): p. 681-92.
30. Bahmad, H., et al., Modeling Human Neurological and Neurodegenerative Diseases: From Induced Pluripotent Stem Cells to Neuronal Differentiation and Its Applications in Neurotrauma. Frontiers in Molecular Neuroscience, 2017. 10: p. 17.
31. Serra, M., et al., Process engineering of human pluripotent stem cells for clinical application. Trends in Biotechnology, 2012. 30(6): p. 350-359.
32. Villa-Diaz, L.G., et al., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 581-583.
33. Rodin, S., et al., Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnology, 2010. 28(6): p. 611-U102.
34. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnology, 2010. 28(6): p. 606-U95.
35. Kolhar, P., et al., Synthetic surfaces for human embryonic stem cell culture. Journal of Biotechnology, 2010. 146(3): p. 143-146.
36. Saha, K., et al., Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(46): p. 18714-18719.
37. Higuchi, A., et al., Physical Cues of Biomaterials Guide Stem Cell Differentiation Fate. Chemical Reviews, 2013. 113(5): p. 3297-3328.
38. Serra, M., et al., Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. Journal of Biotechnology, 2010. 148(4): p. 208-215.
39. Azarin, S.M. and S.P. Palecek, Development of scalable culture systems for human embryonic stem cells. Biochemical Engineering Journal, 2010. 48(3): p. 378-384.
40. Desai, N., P. Rambhia, and A. Gishto, Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems. Reproductive Biology and Endocrinology, 2015. 13: p. 15.
41. Burdick, J.A. and F.M. Watt, High-throughput stem-cell niches. Nature Methods, 2011. 8(11): p. 915-916.
42. Ao, A., J.J. Hao, and C.C. Hong, Regenerative Chemical Biology: Current Challenges and Future Potential. Chemistry & Biology, 2011. 18(4): p. 413-424.
43. Marie, P.J., E. Hay, and Z. Saidak, Integrin and cadherin signaling in bone: role and potential therapeutic targets. Trends in Endocrinology and Metabolism, 2014. 25(11): p. 567-575.
44. Takeichi, M., CADHERIN CELL-ADHESION RECEPTORS AS A MORPHOGENETIC REGULATOR. Science, 1991. 251(5000): p. 1451-1455.
45. Bauwens, C.L., et al., Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells, 2008. 26(9): p. 2300-2310.
46. Higuchi, A., et al., Biomimetic Cell Culture Proteins as Extracellular Matrices for Stem Cell Differentiation. Chemical Reviews, 2012. 112(8): p. 4507-4540.
47. Higuchi, A., et al., Biomaterials for the Feeder-Free Culture of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Chemical Reviews, 2011. 111(5): p. 3021-3035.
48. Wilson, A. and A. Trumpp, Bone-marrow haematopoietic-stem-cell niches. Nature Reviews Immunology, 2006. 6(2): p. 93-106.
49. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014. 39(7): p. 1348-1374.
50. Chowdhury, F., et al., Soft Substrates Promote Homogeneous Self-Renewal of Embryonic Stem Cells via Downregulating Cell-Matrix Tractions. Plos One, 2010. 5(12): p. 10.
51. Sun, Y., et al., Mechanics regulates fate decisions of human embryonic stem cells. PLoS One, 2012. 7(5): p. e37178.
52. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-689.
53. Mohammadrezaei, D., et al., In vitro effect of graphene structures as an osteoinductive factor in bone tissue engineering: A systematic review. Journal of Biomedical Materials Research Part A, 2018. 106(8): p. 2284-2343.
54. Jafari, M., et al., Polymeric scaffolds in tissue engineering: a literature review. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2017. 105(2): p. 431-459.
55. Dubey, N., et al., Graphene: A Versatile Carbon-Based Material for Bone Tissue Engineering. Stem Cells International, 2015: p. 12.
56. Akasaka, T., et al., Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations. Materials Science & Engineering C-Materials for Biological Applications, 2010. 30(3): p. 391-399.
57. Kalbacova, M., et al., Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon, 2010. 48(15): p. 4323-4329.
58. Kaur, T., et al., Biological and mechanical evaluation of poly(lactic-co-glycolic acid)-based composites reinforced with 1D, 2D and 3D carbon biomaterials for bone tissue regeneration. Biomedical Materials, 2017. 12(2): p. 14.
59. Kim, J., et al., Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells. Journal of Materials Chemistry B, 2013. 1(7): p. 933-938.
60. Tang, L.A.L., et al., Highly Wrinkled Cross-Linked Graphene Oxide Membranes for Biological and Charge-Storage Applications. Small, 2012. 8(3): p. 423-431.
61. Li, J.A., et al., Impact of vitronectin concentration and surface properties on the stable propagation of human embryonic stem cells. Biointerphases, 2010. 5(3): p. FA132-FA142.
62. Mei, Y., et al., Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nature Materials, 2010. 9(9): p. 768-778.
63. Veraitch, F.S., et al., The impact of manual processing on the expansion and directed differentiation of embryonic stem cells. Biotechnology and Bioengineering, 2008. 99(5): p. 1216-1229.
64. Ezashi, T., P. Das, and R.M. Roberts, Low O-2 tensions and the prevention of differentiation of hES cells. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(13): p. 4783-4788.
65. Lindvall, O., Dopaminergic neurons for Parkinson′s therapy. Nature Biotechnology, 2012. 30(1): p. 56-58.
66. Lock, L.T. and E.S. Tzanakakis, Stem/progenitor cell sources of insulin-producing cells for the treatment of diabetes. Tissue Engineering, 2007. 13(7): p. 1399-1412.
67. Adil, M.M. and D.V. Schaffer, Expansion of human pluripotent stem cells. Current Opinion in Chemical Engineering, 2017. 15: p. 24-35.
68. Villa-Diaz, L.G., et al., Concise Review: The Evolution of Human Pluripotent Stem Cell Culture: From Feeder Cells to Synthetic Coatings. Stem Cells, 2013. 31(1): p. 1-7.
69. McDevitt, T.C. and S.P. Palecek, Innovation in the culture and derivation of pluripotent human stem cells. Current Opinion in Biotechnology, 2008. 19(5): p. 527-533.
70. Xu, C.H., et al., Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells, 2005. 23(3): p. 315-323.
71. Mahlstedt, M.M., et al., Maintenance of Pluripotency in Human Embryonic Stem Cells Cultured on a Synthetic Substrate in Conditioned Medium. Biotechnology and Bioengineering, 2010. 105(1): p. 130-140.
72. Abraham, S., N. Eroshenko, and R.R. Rao, Role of bioinspired polymers in determination of pluripotent stem cell fate. Regenerative Medicine, 2009. 4(4): p. 561-578.
73. Martin, M.J., et al., Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Medicine, 2005. 11(2): p. 228-232.
74. Amit, M., et al., Feeder layer- and serum-free culture of human embryonic stem cells. Biology of Reproduction, 2004. 70(3): p. 837-845.
75. Hughes, C.S., L.M. Postovit, and G.A. Lajoie, Matrigel: A complex protein mixture required for optimal growth of cell culture. Proteomics, 2010. 10(9): p. 1886-1890.
76. Greenlee, A.R., et al., Combined effects of Matrigel (TM) and growth factors on maintaining undifferentiated murine embryonic stem cells for embryotoxicity testing. Toxicology in Vitro, 2004. 18(4): p. 543-553.
77. Xu, C.H., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology, 2001. 19(10): p. 971-974.
78. Oh, S.K.W. and A.B.H. Choo, Human embryonic stem cell technology: large scale cell amplification and differentiation. Cytotechnology, 2006. 50(1-3): p. 181-190.
79. Abraham, S., et al., Stable Propagation of Human Embryonic and Induced Pluripotent Stem Cells on Decellularized Human Substrates. Biotechnology Progress, 2010. 26(4): p. 1126-1134.
80. Fu, X., et al., Establishment of Clinically Compliant Human Embryonic Stem Cells in an Autologous Feeder-Free System. Tissue Engineering Part C-Methods, 2011. 17(9): p. 927-937.
81. Ilic, D., et al., Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy, 2012. 14(1): p. 122-128.
82. Meng, G.L., et al., Extracellular Matrix Isolated From Foreskin Fibroblasts Supports Long-Term Xeno-Free Human Embryonic Stem Cell Culture. Stem Cells and Development, 2010. 19(4): p. 547-556.
83. Stelling, M.P., et al., Matrix-bound heparan sulfate is essential for the growth and pluripotency of human embryonic stem cells. Glycobiology, 2013. 23(3): p. 337-345.
84. Chowdhury, F., et al., Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nature Materials, 2010. 9(1): p. 82-88.
85. Meng, G.L., S.Y. Liu, and D.E. Rancourt, Synergistic Effect of Medium, Matrix, and Exogenous Factors on the Adhesion and Growth of Human Pluripotent Stem Cells Under Defined, Xeno-Free Conditions. Stem Cells and Development, 2012. 21(11): p. 2036-2048.
86. Kim, B.S., et al., Design of artificial extracellular matrices for tissue engineering. Progress in Polymer Science, 2011. 36(2): p. 238-268.
87. Nishishita, N., et al., Generation of Virus-Free Induced Pluripotent Stem Cell Clones on a Synthetic Matrix via a Single Cell Subcloning in the Naive State. Plos One, 2012. 7(6): p. 9.
88. Klim, J.R., et al., A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nature Methods, 2010. 7(12): p. 989-U72.
89. Brafman, D.A., et al., Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials, 2010. 31(34): p. 9135-9144.
90. Ross, A.M., et al., Synthetic substrates for long-term stem cell culture. Polymer, 2012. 53(13): p. 2533-2539.
91. Hayashi, Y. and M.K. Furue, Biological Effects of Culture Substrates on Human Pluripotent Stem Cells. Stem Cells International, 2016: p. 11.
92. Irwin, E.E., et al., Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials, 2011. 32(29): p. 6912-6919.
93. Phillips, B., et al., Attachment and growth of human embryonic stem cells on microcarriers (vol 138, pg 24, 2008). Journal of Biotechnology, 2009. 139(2): p. 194-194.
94. Janssens, S., et al., Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet, 2006. 367(9505): p. 113-121.
95. Zweigerdt, R., et al., Scalable expansion of human pluripotent stem cells in suspension culture. Nature Protocols, 2011. 6(5): p. 689-700.
96. Larijani, M.R., et al., Long-Term Maintenance of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells in Suspension. Stem Cells and Development, 2011. 20(11): p. 1911-1923.
97. Amit, M., et al., Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nature Protocols, 2011. 6(5): p. 572-579.
98. Steiner, D., et al., Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nature Biotechnology, 2010. 28(4): p. 361-U88.
99. Olmer, R., et al., Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Research, 2010. 5(1): p. 51-64.
100. Amit, M., et al., Suspension Culture of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2010. 6(2): p. 248-259.
101. Marinho, P.A.N., et al., Xeno-Free Production of Human Embryonic Stem Cells in Stirred Microcarrier Systems Using a Novel Animal/Human-Component-Free Medium. Tissue Engineering Part C-Methods, 2013. 19(2): p. 146-155.
102. Phillips, B.W., et al., Attachment and growth of human embryonic stem cells on microcarriers. Journal of Biotechnology, 2008. 138(1-2): p. 24-32.
103. Tamura, A., et al., Thermally responsive microcarriers with optimal poly(N-isopropylacrylamide) grafted density for facilitating cell adhesion/detachment in suspension culture. Acta Biomaterialia, 2012. 8(11): p. 3904-3913.
104. Nie, Y., et al., Scalable Culture and Cryopreservation of Human Embryonic Stem Cells on Microcarriers. Biotechnology Progress, 2009. 25(1): p. 20-31.
105. Storm, M.P., et al., Three-Dimensional Culture Systems for the Expansion of Pluripotent Embryonic Stem Cells. Biotechnology and Bioengineering, 2010. 107(4): p. 683-695.
106. Fernandes, A.M., et al., Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Brazilian Journal of Medical and Biological Research, 2009. 42(6): p. 515-522.
107. Heng, B.C., et al., Translating Human Embryonic Stem Cells from 2-Dimensional to 3-Dimensional Cultures in a Defined Medium on Laminin- and Vitronectin-Coated Surfaces. Stem Cells and Development, 2012. 21(10): p. 1701-1715.
108. Chen, A.K.L., et al., Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Research, 2011. 7(2): p. 97-111.
109. Wilson, J.L. and T.C. McDevitt, Stem cell microencapsulation for phenotypic control, bioprocessing, and transplantation. Biotechnology and Bioengineering, 2013. 110(3): p. 667-682.
110. Ko, D.Y., et al., Recent progress of in situ formed gels for biomedical applications. Progress in Polymer Science, 2013. 38(3): p. 672-701.
111. Lee, K.Y. and D.J. Mooney, Alginate: Properties and biomedical applications. Progress in Polymer Science, 2012. 37(1): p. 106-126.
112. Serra, M., et al., Microencapsulation Technology: A Powerful Tool for Integrating Expansion and Cryopreservation of Human Embryonic Stem Cells. Plos One, 2011. 6(8): p. 13.
113. Burke, S.E. and C.J. Barrett, pH-responsive properties of multilayered poly(L-lysine)/hyaluronic acid surfaces. Biomacromolecules, 2003. 4(6): p. 1773-1783.
114. Yu, Y.L., M. Nakano, and T. Ikeda, Directed bending of a polymer film by light - Miniaturizing a simple photomechanical system could expand its range of applications. Nature, 2003. 425(6954): p. 145-145.
115. Kim, S.J., et al., Electric stimuli responses to poly(vinyl alcohol)/chitosan interpenetrating polymer network hydrogel in NaCl solutions. Journal of Applied Polymer Science, 2002. 86(9): p. 2285-2289.
116. Radhakrishnan, K. and A.M. Raichur, Biologically triggered exploding protein based microcapsules for drug delivery. Chemical Communications, 2012. 48(17): p. 2307-2309.
117. Jeong, B., et al., Biodegradable block copolymers as injectable drug-delivery systems. Nature, 1997. 388(6645): p. 860-862.
118. Chen, G.H. and A.S. Hoffman, GRAFT-COPOLYMERS THAT EXHIBIT TEMPERATURE-INDUCED PHASE-TRANSITIONS OVER A WIDE-RANGE OF PH. Nature, 1995. 373(6509): p. 49-52.
119. Bae, Y.H., T. Okano, and S.W. Kim, TEMPERATURE-DEPENDENCE OF SWELLING OF CROSS-LINKED POLY(N,N′-ALKYL SUBSTITUTED ACRYLAMIDES) IN WATER. Journal of Polymer Science Part B-Polymer Physics, 1990. 28(6): p. 923-936.
120. Nagase, K., et al., Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials, 2018. 153: p. 27-48.
121. Tang, Z.L., Y. Akiyama, and T. Okano, Recent Development of Temperature-Responsive Cell Culture Surface Using Poly(N-isopropylacrylamide). Journal of Polymer Science Part B-Polymer Physics, 2014. 52(14): p. 917-926.
122. Priya James, H., et al., Smart polymers for the controlled delivery of drugs - a concise overview. Acta Pharm Sin B, 2014. 4(2): p. 120-7.
123. Moran, M.T., et al., Cell growth and detachment from protein-coated PNIPAAm-based copolymers. Journal of Biomedical Materials Research Part A, 2007. 81A(4): p. 870-876.
124. Morikawa, N. and T. Matsuda, Thermoresponsive artificial extracellular matrix: N-isopropylacrylamide-graft-copolymerized gelatin. Journal of Biomaterials Science-Polymer Edition, 2002. 13(2): p. 167-183.
125. Liao, T.Q., et al., N-Isopropylacrylamide-Based Thermoresponsive Polyelectrolyte Multilayer Films for Human Mesenchymal Stem Cell Expansion. Biotechnology Progress, 2010. 26(6): p. 1705-1713.
126. Schmidt, S., et al., Adhesion and Mechanical Properties of PNIPAM Microgel Films and Their Potential Use as Switchable Cell Culture Substrates. Advanced Functional Materials, 2010. 20(19): p. 3235-3243.
127. Hutmacher, D.W., A commentary on "Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells" by N. Yamada, T. Okano, H. Sakai, F. Karikusa, Y. Sawasaki, Y. Sakurai (Makromol. Chem., Rapid commun. 1990, 11, 571-576). Macromolecular Rapid Communications, 2005. 26(7): p. 505-513.
128. Laing, S., et al., Thermoresponsive Polymer Micropatterns Fabricated by Dip-Pen Nanolithography for a Highly Controllable Substrate with Potential Cellular Applications. Acs Applied Materials & Interfaces, 2016. 8(37): p. 24844-24852.
129. Tamura, A., et al., Temperature-responsive poly(N-isopropylacrylamide)-grafted microcarriers for large-scale non-invasive harvest of anchorage-dependent cells. Biomaterials, 2012. 33(15): p. 3803-3812.
130. Tang, Z.L., Y. Akiyama, and T. Okano, Temperature-Responsive Polymer Modified Surface for Cell Sheet Engineering. Polymers, 2012. 4(3): p. 1478-1498.
131. Takahashi, H., et al., Controlled Chain Length and Graft Density of Thermoresponsive Polymer Brushes for Optimizing Cell Sheet Harvest. Biomacromolecules, 2010. 11(8): p. 1991-1999.
132. Icriverzi, M., et al., In vitro behavior of human mesenchymal stem cells on poly(N-isopropylacrylamide) based biointerfaces obtained by matrix assisted pulsed laser evaporation. Applied Surface Science, 2018. 440: p. 712-724.
133. Stobener, D.D., et al., Endothelial, smooth muscle and fibroblast cell sheet fabrication from self-assembled thermoresponsive poly(glycidyl ether) brushes. Soft Matter, 2018. 14(41): p. 8333-8343.
134. Shotorbani, B.B., et al., Cell sheet biofabrication by co-administration of mesenchymal stem cells secretome and vitamin C on thermoresponsive polymer. Journal of Materials Science-Materials in Medicine, 2018. 29(11): p. 17.
135. Sakulaue, P., et al., Improving Cell Detachment from Temperature-Responsive Poly(N-isopropylacrylamide-co-acrylamide)-Grafted Culture Surfaces by Spin Coating. Acs Omega, 2018. 3(12): p. 18181-18188.
136. Mokhtarinia, K., et al., Switchable phase transition behavior of thermoresponsive substrates for cell sheet engineering. Journal of Polymer Science Part B-Polymer Physics, 2018. 56(23): p. 1567-1576.
137. Heinen, S., et al., Transfer of functional thermoresponsive poly(glycidyl ether) coatings for cell sheet fabrication from gold to glass surfaces. Journal of Materials Chemistry B, 2018. 6(10): p. 1489-1500.
138. Akiyama, Y., et al., Poly(N-isopropylacrylamide)-Grafted Polydimethylsiloxane Substrate for Controlling Cell Adhesion and Detachment by Dual Stimulation of Temperature and Mechanical Stress. Biomacromolecules, 2018. 19(10): p. 4014-4022.
139. Kanai, N., M. Yamato, and T. Okano, Cell sheets engineering for esophageal regenerative medicine. Annals of Translational Medicine, 2014. 2(3).
140. Nagase, K., et al., Micro/nano-imprinted substrates grafted with a thermoresponsive polymer for thermally modulated cell separation. Journal of Materials Chemistry B, 2017. 5(30): p. 5924-5930.
141. Nagase, K., et al., Thermoresponsive Cationic Copolymer Brushes for Mesenchymal Stem Cell Separation. Biomacromolecules, 2015. 16(2): p. 532-540.
142. Nagase, K., et al., Hydrophobized Thermoresponsive Copolymer Brushes for Cell Separation by Multistep Temperature Change. Biomacromolecules, 2013. 14(10): p. 3423-3433.
143. Nagase, K., et al., Thermally Modulated Retention of Lymphoctytes on Polymer-Brush-Grafted Glass Beads. Macromolecular Bioscience, 2012. 12(3): p. 333-340.
144. Nagase, K., et al., Dynamically cell separating thermo-functional biointerfaces with densely packed polymer brushes. Journal of Materials Chemistry, 2012. 22(37): p. 19514-19522.
145. Lock, L.T. and E.S. Tzanakakis, Expansion and differentiation of human embryonic stem cells to endoderm progeny in a microcarrier stirred-suspension culture. Tissue Eng Part A, 2009. 15(8): p. 2051-63.
146. Nie, Y., et al., Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol Prog, 2009. 25(1): p. 20-31.
147. Oh, S.K., et al., Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res, 2009. 2(3): p. 219-30.
148. Bardy, J., et al., Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells. Tissue Eng Part C Methods, 2013. 19(2): p. 166-80.
149. Fernandes, A.M., et al., Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Braz J Med Biol Res, 2009. 42(6): p. 515-22.
150. Braam, S.R., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells, 2008. 26(9): p. 2257-65.
151. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol, 2010. 28(6): p. 606-10.
152. Chen, G., et al., Chemically defined conditions for human iPSC derivation and culture. Nat Methods, 2011. 8(5): p. 424-9.
153. Yang, H.S., et al., Suspension culture of mammalian cells using thermosensitive microcarrier that allows cell detachment without proteolytic enzyme treatment. Cell Transplant, 2010. 19(9): p. 1123-32.
154. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014.
155. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chem Rev, 2011. 111(5): p. 3021-35.
156. Kato, R., et al., Parametric analysis of colony morphology of non-labelled live human pluripotent stem cells for cell quality control. Scientific Reports, 2016. 6: p. 12.
157. Stefkova, K., J. Prochazkova, and J. Pachernik, Alkaline Phosphatase in Stem Cells. Stem Cells International, 2015: p. 11.
158. Tsankov, A.M., et al., A qPCR ScoreCard quantifies the differentiation potential of human pluripotent stem cells. Nat Biotechnol, 2015. 33(11): p. 1182-92.
159. Baxter, M.A., et al., Analysis of the distinct functions of growth factors and tissue culture substrates necessary for the long-term self-renewal of human embryonic stem cell lines. Stem Cell Research, 2009. 3(1): p. 28-38.
160. Amit, M., et al., Feeder layer-and serum-free culture of human embryonic stem cells. Biology of reproduction, 2004. 70(3): p. 837-845.
161. Xu, C., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol, 2001. 19(10): p. 971-4.
162. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
163. Harkness, L., et al., Isolation and differentiation of chondrocytic cells derived from human embryonic stem cells using dlk1/FA1 as a novel surface marker. Stem Cell Rev, 2009. 5(4): p. 353-68.
164. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chemical reviews, 2011. 111(5): p. 3021-3035.
165. Peng, I.C., et al., Continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surfaces. Biomaterials, 2016. 76: p. 76-86.
指導教授 樋口亞紺 審核日期 2019-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明