博碩士論文 106324048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.234.143.26
姓名 林珈琪(Chia-Chi LIN)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 剪切力溶液製程應用於高效能有機薄膜電晶體:含硒碳鏈聯?吩小分子半導體材料
(Selenium-Alkyl Bithiophene(SeBT)-Based Small Molecular Semiconductors via Solution Sheared Method for High-Performance Organic Thin-Film Transistors)
相關論文
★ 自組裝嵌段共聚高分子/小分子混成奈米浮閘極記憶體:元件製備及效能評估★ 硫碳鏈聯噻吩環小分子半導體及高介電常數TiOX/SiOX介電層製備低電壓場效應光電晶體元件
★ 高介電常數TiOX/SiOX介電層製備低電壓場效應 電晶體元件★ 利用可溶液製程之含硫碳鏈聯噻吩小分子製作高效能有機場效應電晶體
★ 以噴塗技術沉積有機半導體薄膜:形貌分析及其於有機場效應電晶體元件應用★ 利用溶液製程製作不同次結構之併環噻吩小分子高效能有機場效應電晶體
★ 利用超音波噴塗技術製備鈣鈦礦薄膜於太陽能 電池元件之應用★ 利用溶液剪切力塗佈法製作高效能DTTRQ小分子 N 型有機場效電晶體元件
★ 用於高性能n型有機薄膜晶體管的溶液 - 二亞甲基取代的醌基二炔基噻吩(DTDSTQ)基小分子★ 利用溶液剪切力塗佈法製備高分子與小分子混摻之有機場效電晶體元件
★ 利用兩步驟超音波噴塗技術製備平面型p-i-n結構鈣鈦礦太陽能電池元件之應用★ 透明氧化物薄膜電晶體與電晶體式記憶體之分析與應用
★ 以含硫碳鏈並?吩環小分子半導體材料利用溶液剪切力塗佈法製作高性能有機場效應電晶體★ 利用超音波噴塗技術製備混合有機陽離子鈣鈦礦 太陽能電池
★ 超音波噴塗法製備鈣鈦礦薄膜並探討添加劑對薄膜形貌及其太陽能電池元件光伏表現之影響★ 超音波噴塗技術結合多通道注射幫浦進料調控系統製備混合鹵素鈣鈦礦太陽能電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2023-6-30以後開放)
摘要(中) 本研究利用溶液製程並透過剪切力塗佈法製作有機薄膜電晶體元件,主要研究於有機薄膜層,由於之前實驗室製作含硫碳鏈之p-type有機小分子材料SBT,有機薄膜元件電性達1.7 cm2V-1s-1。本研究將硒取代硫原子運用不同鍊長的含硒碳鏈之聯?吩(selenylated bithiophene; SeBT)為核心,核心頭尾兩端接上三併環?吩(2,6-di(dithieno[3,2-b;2’,3’-d]-thiophen-2yl; DDTT)為主軸,合成本研究使用得P-type有機小分子半導體材料DDTT-SeBT-C6、DDTT-SeBT-C10及DDTT-SeBT-C14。
隨著含硒碳鏈長的增加,載子遷移率從DDTT-SeBT-C6 0.09 cm2V-1s-1,增加至DDTT-SeBT-C10 0.06 cm2V-1s-1,再增加至DDTT-SeBT-C14 4.01 cm2V-1s-1,並利用光學顯微鏡、原子力顯微鏡等儀器分析其表面形貌。其中,DDTT-SeBT-C6薄膜呈現不連續狀,DDTT-SeBT-C10從GIXRD可發現結晶性不佳,所以造成電性不佳,反之,DDTT-SeBT-C14表面形貌呈現連續性且結晶性佳,得到優異的電性表現載子遷移率4.01 cm2V-1s-1,我們利用單晶可知,當側鍊較長時,可改善主軸扭轉角使分子呈平面性提高載子遷移率。
摘要(英) This study research new small molecule semiconductors via solution shearing manufacture organic thin film transistors. Owing to the previous work thio-alkyl substituted bithiophene (SBT), the organic thin film transistor electrical properties is 1.7 cm2V-1s-1. The series of new small molecules is selenylated bithiophene with different alkyl side chains. Then, add 2,6-di(dithieno[3,2-b;2’,3’-d]-thiophen-2yl (DDTT) to become the main backbone on the both side of the core.
As the carbon length increase, the carrier mobility increases from DDTT-SeBT-C6 0.09 cm2V-1s-1 to DDTT-SeBT-C14 4.01 cm2V-1s-1. The surface morphology was analyzed by optical microscopy, atomic force microscopy, grazing incidence x-ray diffraction, UV-vis spectrophotometer. In these three molecules, the morphology of DDTT-SeBT-C6 is discontinuity. The crystallinity of DDTT-SeBT-C10 is worse. That the reason why they get the poor electrical properties. However, the morphology of DDTT-SeBT-C14 is continuity and the high crystallinity. When the side length increase, the torsion angle can be improved to make the backbone planar to improve the carrier mobility.
關鍵字(中) ★ 溶液製程
★ 剪切力塗佈
★ 有機小分子半導體材料
★ 有機薄膜電晶體
關鍵字(英) ★ OTFT
★ solution shearing
★ organic small molecule semiconductor
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 - 1 -
1.1 前言 - 1 -
1.2 有機薄膜電晶體 - 2 -
1.2.1 背景 - 2 -
1.3 基本結構 - 3 -
1.4 界面工程 - 4 -
1.5 基本工作原理 - 7 -
1.6 基本參數與特性曲線 - 8 -
1.7 分子排列與載子傳遞機制 - 10 -
1.8 有機半導體材料 - 11 -
1.9 P-TYPE有機小分子半導體材料 - 11 -
1.10 N-TYPE有機小分子半導體材料 - 14 -
1.11 有機分子之非共價結構閉鎖效應 - 16 -
1.12 有機半導體薄膜製程 - 17 -
1.12.1 真空熱蒸鍍法 - 17 -
1.12.2 溶液製程法 - 18 -
1.13 研究動機 - 20 -
第二章 研究方法 - 21 -
2.1 實驗藥品 - 21 -
2.2 實驗設備 - 22 -
2.3 實驗方法 - 23 -
2.3.1 基板前處理與表面修飾 - 23 -
2.3.2 元件設備 - 24 -
2.4 元件半導體層薄膜量測分析 - 25 -
2.4.1 元件電性量測 - 25 -
2.4.2 偏光光學顯微鏡(POLARIZED OPTICAL MICROSCOPY) - 25 -
2.4.3 紫外線-可見光光譜儀(UV-VIS SPECTROPHOTOMETER) - 25 -
2.4.4 原子力顯微鏡 - 26 -
2.4.5 低掠角X光繞射儀 - 26 -
第三章 結果與討論 - 27 -
3.1 有機薄膜電晶體元件電性分析 - 27 -
3.2 有機小分子半導體材料熱性質分析 - 29 -
3.3 有機小分子半導體光譜特性與電化學分析 - 30 -
3.4 有機小分子半導體材料單晶結構分析 - 33 -
3.5 有機小分子材料半導體薄膜之表面形貌分析 - 35 -
3.5.1光學顯微鏡之表面形貌 - 35 -
3.5.2原子力顯微鏡之表面形貌 - 37 -
3.6 有機小分子材料半導體薄膜之微結構分析 - 38 -
3.7 結論與未來展望 - 42 -
3.8 參考文獻 - 43 -
3.9 附錄 - 46 -
參考文獻 1. Reese, C.; Roberts, M.; Ling, M.-m.; Bao, Z., Organic thin film transistors. Materials today 2004, 7, 20-27.
2. Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D., Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 2011, 112, 2208-2267.
3. Guo, X.; Facchetti, A.; Marks, T. J., Imide-and amide-functionalized polymer semiconductors. Chem. Rev. 2014, 114, 8943-9021.
4. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. J. Chem. Soc., Chem. Commun. 1977, 578-580.
5. Ebisawa, F.; Kurokawa, T.; Nara, S., Electrical properties of polyacetylene/polysiloxane interface. Journal of applied physics 1983, 54, 3255-3259.
6. Yuan, Y.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C.; Chen, J.; Nordlund, D.; Toney, M. F.; Huang, J.; Bao, Z., Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nature communications 2014, 5, 3005.
7. Ward, J. W.; Lamport, Z. A.; Jurchescu, O. D., Versatile organic transistors by solution processing. ChemPhysChem 2015, 16, 1118-1132.
8. Guo, Y.; Yu, G.; Liu, Y., Functional organic field?effect transistors. Adv. Mat. 2010, 22, 4427-4447.
9. Klauk, H., Organic thin-film transistors. Chem. Soc. Rev. 2010, 39, 2643-2666.
10. Dong, H.; Fu, X.; Liu, J.; Wang, Z.; Hu, W., 25th Anniversary Article: Key Points for High?Mobility Organic Field?Effect Transistors. Adv. Mat. 2013, 25, 6158-6183.
11. Di, C.-A.; Liu, Y.; Yu, G.; Zhu, D., Interface engineering: an effective approach toward high-performance organic field-effect transistors. Acc. Chem. Res. 2009, 42, 1573-1583.
12. Takimiya, K.; Osaka, I.; Nakano, M., π-Building blocks for organic electronics: revaluation of “inductive” and “resonance” effects of π-electron deficient units. Chem. Mater. 2013, 26, 587-593.
13. Dimitrakopoulos, C. D.; Malenfant, P. R., Organic thin film transistors for large area electronics. Adv. Mat. 2002, 14, 99-117.
14. Tan, H.; Mathews, N.; Cahyadi, T.; Zhu, F.; Mhaisalkar, S., The effect of dielectric constant on device mobilities of high-performance, flexible organic field effect transistors. Appl. Phys. Lett. 2009, 94, 177.
15. Dong, H.; Wang, C.; Hu, W., High performance organic semiconductors for field-effect transistors. Chem. Commun. 2010, 46, 5211-5222.
16. Giri, G.; Verploegen, E.; Mannsfeld, S. C.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z., Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 2011, 480, 504.
17. Ebata, H.; Izawa, T.; Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H.; Yui, T., Highly soluble [1] benzothieno [3, 2-b] benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. Journal of the American Chemical Society 2007, 129, 15732-15733.
18. Bao, Z.; Lovinger, A. J.; Brown, J., New air-stable n-channel organic thin film transistors. Journal of the American Chemical Society 1998, 120, 207-208.
19. Jurchescu, O. D.; Popinciuc, M.; van Wees, B. J.; Palstra, T. T., Interface?controlled, high?mobility organic transistors. Adv. Mat. 2007, 19, 688-692.
20. Watanabe, M.; Chang, Y. J.; Liu, S.-W.; Chao, T.-H.; Goto, K.; Islam, M. M.; Yuan, C.-H.; Tao, Y.-T.; Shinmyozu, T.; Chow, T. J., The synthesis, crystal structure and charge-transport properties of hexacene. Nature chemistry 2012, 4, 574.
21. Wang, M.; Li, J.; Zhao, G.; Wu, Q.; Huang, Y.; Hu, W.; Gao, X.; Li, H.; Zhu, D., High?Performance Organic Field?Effect Transistors Based on Single and Large?Area Aligned Crystalline Microribbons of 6, 13?Dichloropentacene. Adv. Mat. 2013, 25, 2229-2233.
22. Mannsfeld, S. C.; Tang, M. L.; Bao, Z., Thin film structure of triisopropylsilylethynyl?functionalized pentacene and tetraceno [2, 3?b] thiophene from grazing incidence X?Ray diffraction. Adv. Mat. 2011, 23, 127-131.
23. Anthony, J. E.; Eaton, D. L.; Parkin, S. R., A road map to stable, soluble, easily crystallized pentacene derivatives. Organic letters 2002, 4, 15-18.
24. Garnier, F.; Hajlaoui, R.; El Kassmi, A.; Horowitz, G.; Laigre, L.; Porzio, W.; Armanini, M.; Provasoli, F., Dihexylquaterthiophene, a two-dimensional liquid crystal-like organic semiconductor with high transport properties. Chem. Mater. 1998, 10, 3334-3339.
25. Shukla, D.; Nelson, S. F.; Freeman, D. C.; Rajeswaran, M.; Ahearn, W. G.; Meyer, D. M.; Carey, J. T., Thin-film morphology control in naphthalene-diimide-based semiconductors: high mobility n-type semiconductor for organic thin-film transistors. Chem. Mater. 2008, 20, 7486-7491.
26. Katz, H.; Lovinger, A.; Johnson, J.; Kloc, C.; Siegrist, T.; Li, W.; Lin, Y.-Y.; Dodabalapur, A., A soluble and air-stable organic semiconductor with high electron mobility. Nature 2000, 404, 478.
27. Katz, H. E.; Johnson, J.; Lovinger, A. J.; Li, W., Naphthalenetetracarboxylic diimide-based n-channel transistor semiconductors: structural variation and thiol-enhanced gold contacts. Journal of the American Chemical Society 2000, 122, 7787-7792.
28. He, T.; Stolte, M.; Wurthner, F., Air?stable n?channel organic single crystal field?effect transistors based on microribbons of core?chlorinated naphthalene diimide. Adv. Mat. 2013, 25, 6951-6955.
29. Brown, A.; De Leeuw, D.; Lous, E.; Havinga, E., Organic n-type field-effect transistor. Synthetic metals 1994, 66, 257-261.
30. Menard, E.; Podzorov, V.; Hur, S. H.; Gaur, A.; Gershenson, M. E.; Rogers, J. A., High?performance n?and p?type single?crystal organic transistors with free?space gate dielectrics. Adv. Mat. 2004, 16, 2097-2101.
31. Oh, J. H.; Suraru, S. L.; Lee, W. Y.; Konemann, M.; Hoffken, H. W.; Roger, C.; Schmidt, R.; Chung, Y.; Chen, W. C.; Wurthner, F., High?Performance Air?Stable n?Type Organic Transistors Based on Core?Chlorinated Naphthalene Tetracarboxylic Diimides. Adv. Funct. Mater. 2010, 20, 2148-2156.
32. Gao, X.; Hu, Y., Development of n-type organic semiconductors for thin film transistors: a viewpoint of molecular design. J. Mater. Chem. C 2014, 2, 3099-3117.
33. Pappenfus, T. M.; Chesterfield, R. J.; Frisbie, C. D.; Mann, K. R.; Casado, J.; Raff, J. D.; Miller, L. L., A π-stacking terthiophene-based quinodimethane is an n-channel conductor in a thin film transistor. Journal of the American Chemical Society 2002, 124, 4184-4185.
34. Wu, Q.; Li, R.; Hong, W.; Li, H.; Gao, X.; Zhu, D., Dicyanomethylene-Substituted Fused Tetrathienoquinoid for High-Performance, Ambient-Stable, Solution-Processable n-Channel Organic Thin-Film Transistors. Chem. Mater. 2011, 23, 3138-3140.
35. Qiao, Y.; Guo, Y.; Yu, C.; Zhang, F.; Xu, W.; Liu, Y.; Zhu, D., Diketopyrrolopyrrole-containing quinoidal small molecules for high-performance, air-stable, and solution-processable n-channel organic field-effect transistors. Journal of the American Chemical Society 2012, 134, 4084-4087.
36. Huang, H.; Yang, L.; Facchetti, A.; Marks, T. J., Organic and polymeric semiconductors enhanced by noncovalent conformational locks. Chem. Rev. 2017, 117, 10291-10318.
37. Ahmadi, S.; Asim, N.; Alghoul, M.; Hammadi, F.; Saeedfar, K.; Ludin, N. A.; Zaidi, S. H.; Sopian, K., The role of physical techniques on the preparation of photoanodes for dye sensitized solar cells. International Journal of Photoenergy 2014, 2014.
38. Diao, Y.; Shaw, L.; Bao, Z.; Mannsfeld, S. C., Morphology control strategies for solution-processed organic semiconductor thin films. Energy & Environmental Science 2014, 7, 2145-2159.
39. Vegiraju, S.; Chang, B. C.; Priyanka, P.; Huang, D. Y.; Wu, K. Y.; Li, L. H.; Chang, W. C.; Lai, Y. Y.; Hong, S. H.; Yu, B. C., Intramolecular Locked Dithioalkylbithiophene?Based Semiconductors for High?Performance Organic Field?Effect Transistors. Adv. Mat. 2017, 29, 1702414.
40. Mei, J.; Bao, Z., Side chain engineering in solution-processable conjugated polymers. Chem. Mater. 2013, 26, 604-615.
指導教授 劉振良(Cheng-Liang Liu) 審核日期 2018-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明