博碩士論文 106324050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:34.237.52.11
姓名 蔡宗哲(Zong-Zhe Cai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 預測固體溶質於超臨界二氧化碳中的溶解度
相關論文
★ 預測固體溶質於超臨界二氧化碳添加共溶劑系統之溶解度★ 碳酸二乙酯與低碳醇類於常壓下之汽液相平衡
★ 探討Peng-Robinson+COSMOSAC狀態方程式中分散項與溫度之關係★ 探討分散項之溫度函數與體積參數之修正對PR+COSMOSAC於相平衡預測之影響
★ 預測有機物與二氧化碳雙成份系統之固液氣三相平衡★ 常壓下乙酸酯類之雙成份混合物汽液相平衡
★ 以第一原理計算鋰嵌入與擴散於具氧空缺之二氧化鈦結構★ 探討不同量子化學方法對PR+COSMOSAC狀態方程式應用於預測純物質及混合流體相行為之影響
★ 鋯金屬有機框架材料之碳氫氣體吸附與分離預測★ 甲基水楊酸異構物於超臨界二氧化碳中之溶解度量測
★ 原料藥與水楊酸衍生物於超臨界二氧化碳中之溶解度量測★ 以第一原理計算探討鋰於鈮摻雜二氧化鈦之嵌入與擴散路徑
★ 探討COSMO-SAC-dsp模型中分散項和組合項之效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-6-30以後開放)
摘要(中) 在本研究中,利用兩種預測型的熱力學模型來計算固體溶質於超臨界二氧化碳中的溶解度,分別為官能基貢獻法的PSRK狀態方程式,及透過量子化學進行運算的PR+COSMOSAC狀態方程式。因於PSRK狀態方程式的計算中,需使用純物質的臨界性質,於是另外找了四種官能基貢獻法分別為JR、CG、MG和NRR,以及PR+COSMOSAC狀態方程式來計算其所需的臨界性質。而PR+COSMOSAC只需要分子結構,並利用該結構進行量子化學與COSMO溶合計算的結果,不需要其他的輸入檔,即可計算流體的相平衡。最後利用固體溶質的熔點及熔化熱計算固相的逸壓,並透過熱力學相平衡的計算,即可得到固體溶質於超臨界二氧化碳中的溶解度。
為了系統性的比較此兩種方法於溶解度計算的差異,本研究一共探討了101個固體溶質於超臨界二氧化中的溶解度,由於PSRK會有缺乏官能基定義及參數的問題,故PSRK僅能計算其中59個系統,以不同臨界性質的計算結果分別表示為PSRK-JR、PSRK-CG、PSRK-MG、PSRK-NRR及PSRK-PRCS,其誤差(ALD-x)分別為1.962、1.410、1.346、1.468及1.468,然而在同樣的59個系統中,藉由PR+COSMOSAC計算所得到的誤差(ALD-x)為1.003,且因PR+COSMOSAC無缺乏參數的問題,故可應用於預測本研究中的101個系統,而其溶解度預測之誤差(ALD-x)為0.921,亦有良好的表現。本研究進一步從中挑選出23種固體溶質,探討其與20種有機共溶劑及超臨界二氧化碳混合的三元系統,一共組合出61個系統,利用PR+COSMOSAC進行溶解度的預測,其結果顯示計算誤差(ALD-x)為0.719,亦具有一定的準確度,而PSRK因缺參數的緣故,僅能計算其中53個系統,利用PSRK-JR、PSRK-CG、PSRK-MG、PSRK-NRR及PSRK-PRCS進行溶解度的預測,誤差(ALD-x)結果分別為1.800、1.299、1.372、1.342及1.384。
摘要(英) In this study, two predictive thermodynamic models were applied to predict the solubility of pure solid solute in supercritical carbon dioxide. One is the PSRK EOS (Predictive Soave-Redich-Kwong equation of state) and the other is the PR+COSMOSAC EOS. The PSRK EOS is based on the group contribution concept. The required critical properties and acentric factor of pure solid solute for PSRK EOS are also determined from group contribution methods (four different models are evaluated: JR, CG, MG and NNR) and PR+COSMOSAC EOS, due to the absence of experimental data in literature. The PR+COSMOSAC EOS utilizes quantum mechanical calculation results of molecules to predict phase equilibrium of fluids and does not required critical properties and acentric factor as input. However, it should be noted that the melting temperature and heat of fusion of solid solutes are necessary to estimate the solid phase fugacity in the solubility calculation for both EOS.
The solubility of 101 solid solutes in supercritical carbon dioxide is investigated in this study. Because of the missing parameter issue and lack of functional group definitions in group contribution methods, the PSKR EOS can predict solubility for only 59 solid solutes. The overall average logarithmic deviation (ALD-x) in solubility for these 59 solid solutes are 1.96, 1.41, 1.35, 1.47, 1.47 and 1.00 from PSRK-JR, PSRK-CG, PSRK-MG, PSRK-NNR, PSRK-PRCS and PR+COSMOSAC, respectively. The PR+COSMOSAC EOS, in general, provides more accurate results than group contribution methods. Since the PR+COSMOSAC EOS does not have the missing parameter issue, it can be applied to predict all solid solutes considered in this study and provide a similar accuracy (ALD-x = 0.92). In addition, the accuracy of six aforementioned approaches in predicting solubility of 23 solid solutes in supercritical carbon dioxide with 20 organic cosolvents (a total of 61 ternary systems) was also investigated. The PR+COSMOSAC EOS still provides the most accurate results (ALD-x = 0.71) in the ternary systems compared to those from PRSK EOS (ALD-x = 1.87, 1.32, 1.39, and 1.82 from PSRK-JR, PSRK-CG, PSRK-MG, and PSRK-NNR, respectively, for 18 solid solutes and a total of 53 ternary systems). This study shows that the PR+COSMOSAC EOS could provide useful information for design of industry process when no experimental data are available.
關鍵字(中) ★ 預測純固體溶解度
★ 預測含有機共溶劑之固體溶解度
★ 利用官能基貢獻法計算臨界性質
★ 超臨界二氧化碳
關鍵字(英) ★ PR+COSMOSAC EOS
★ PSRK EOS
論文目次 中文摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vi
表目錄 vii
第一章 緒論 1
1-1 超臨界流體之性質與應用 1
1-2 回顧固體溶質溶解度之計算方法 3
1-3 研究動機 6
第二章 計算原理與細節 7
2-1 溶解度之計算細節 7
2-2 PR+COSMOSAC狀態方程式 9
2-2-1 溶合自由能 (Solvation Free Energy) 10
2-2-2 QM/COSMO資訊的細節 15
2-3 PSRK 狀態方程式 16
2-3-1 官能基貢獻法計算臨界性質 17
2-3-2 PR+COSMOSAC計算臨界性質 19
2-3-3 Acentric Factor之計算方法 20
第三章 結果與討論 21
3-1 不同方法所得之臨界性質對蒸氣壓計算的影響 22
3-1-1 探討CG-method有無使用2nd order之影響 27
3-2 探討於二元系統中計算溶解度之結果 28
3-2-1 探討類固醇藥物之溶解度計算結果 38
3-2-2 探討PR+COSMOSAC環狀參數修正對溶解度計算之影響 40
3-3 探討於三元系統中計算溶解度之結果 46
3-3-1 探討添加有機共溶劑對固體溶質溶解度之影響 52
3-4 分子結構對PR+COSMOSAC計算之影響 55
第四章 結論 58
參考文獻 64
附錄(一) 臨界性質計算結果 74
附錄(二) 計算蒸氣壓的分子 84
附錄(三) 官能基切割示意圖 85
附錄(四) 各系統溶解度計算結果 86
附錄(五) 固體溶質的分子的結構 95
參考文獻 [1]. Michel Perrut, “Supercritical fluid applications: industrial developments and economic issues”. Ind. Eng. Chem. Res, Vol 39, pp. 4531-4535, 2000.
[2]. X. X. Zhang, S. Heinonen, and E. Levanen, “Applications of supercritical carbon dioxide in materials processing and synthesis”. RSC Adv., Vol 4, pp. 61137-61152, 2014.
[3]. Larry T. Taylor, “Supercritical fluid chromatography for the 21st century”. J. Supercrit. Fluids, Vol 47, pp. 566-573, 2009.
[4]. Jennifer Jung and Michel Perrut, “Particle design using supercritical fluids: literature and patent survey”. J. Supercrit. Fluids, Vol 20, pp. 179-219, 2001.
[5]. T. Abou Elmaaty and E. Abd El-Aziz, “Supercritical carbon dioxide as a green media in textile dyeing: A review”. Text. Res. J., Vol 88, pp. 1184-1212, 2018.
[6]. M. Liu, et al., “Eco-friendly curcumin-based dyes for supercritical carbon dioxide natural fabric dyeing”. J. Clean Prod., Vol 197, pp. 1262-1267, 2018.
[7]. Josef Chrastil, “Solubility of solids and liquids in supercritical gases”. J. Phys. Chem., Vol 86, pp. 3016-3021, 1982.
[8]. J. Mendez-Santiago and A. S. Teja, “The solubility of solids in supercritical fluids”. Fluid Phase Equilib., Vol 158, pp. 501-510, 1999.
[9]. F. Gharagheizi, et al., “Artificial neural network modeling of solubilities of 21 commonly used industrial solid compounds in supercritical carbon dioxide”. Ind. Eng. Chem. Res, Vol 50, pp. 221-226, 2011.
[10]. A. A. el Hadj, et al., “Novel approach for estimating solubility of solid drugs in supercritical carbon dioxide and critical properties using direct and inverse artificial neural network (ANN)”. Neural Comput. Appl., Vol 28, pp. 87-99, 2017.
[11]. Ding-Yu Peng and Donald B. Robinson, “A new two-constant equation of state”. Ind. Eng. Chem. Fundam., Vol 15, pp. 59-64, 1976.
[12]. Giorgio Soave, “Equilibrium constants from a modified Redlich-Kwong equation of state”. Chem. Eng. Sci., Vol 27, pp. 1197-1203, 1972.
[13]. C. C. Huang, et al., “Calculation of the solid solubilities in supercritical carbon dioxide using a modified mixing model”. Fluid Phase Equilib., Vol 179, pp. 67-84, 2001.
[14]. M. Yazdizadeh, A. Eslamimanesh, and F. Esmaeilzadeh, “Thermodynamic modeling of solubilities of various solid compounds in supercritical carbon dioxide: Effects of equations of state and mixing rules”. J. Supercrit. Fluids, Vol 55, pp. 861-875, 2011.
[15]. Chongli Zhong and Hongyu Yang, “Representation of the solubility of solids in supercritical fluids using the SAFT equation of state”. Ind. Eng. Chem. Res, Vol 41, pp. 4899-4905, 2002.
[16]. Jens Ahlers, Tomohiko Yamaguchi, and Jürgen Gmehling, “Development of a universal group contribution equation of state. 5. prediction of the solubility of high-boiling compounds in supercritical gases with the group contribution equation of state volume-translated Peng−Robinson”. Ind. Eng. Chem. Res, Vol 43, pp. 6569-6576, 2004.
[17]. C. S. Su, “Prediction of solubilities of solid solutes in carbon dioxide-expanded organic solvents using the predictive Soave-Redlich-Kwong (PSRK) equation of state”. Chem. Eng. Res. Des., Vol 91, pp. 1163-1169, 2013.
[18]. L. H. Wang and S. T. Lin, “A predictive method for the solubility of drug in supercritical carbon dioxide”. J. Supercrit. Fluids, Vol 85, pp. 81-88, 2014.
[19]. Y. S. Ting and C. M. Hsieh, “Prediction of solid solute solubility in supercritical carbon dioxide with organic cosolvents from the PR plus COSMOSAC equation of state”. Fluid Phase Equilib., Vol 431, pp. 48-57, 2017.
[20]. Ireneo Kikic, Michele Lora, and Alberto Bertucco, “A thermodynamic analysis of three-phase equilibria in binary and ternary systems for applications in rapid expansion of a supercritical solution (RESS), particles from gas-saturated solutions (PGSS), and supercritical antisolvent (SAS)”. Ind. Eng. Chem. Res, Vol 36, pp. 5507-5515, 1997.
[21]. Shiang-Tai Lin, Chieh-Ming Hsieh, and Ming-Tsung Lee, “Solvation and chemical engineering thermodynamics”. J. Chin. Inst. Chem. Eng., Vol 38, pp. 467-476, 2007.
[22]. C. M. Hsieh and S. T. Lin, “Determination of cubic equation of state parameters for pure fluids from first principle solvation calculations”. Aiche J., Vol 54, pp. 2174-2181, 2008.
[23]. Chieh-Ming Hsieh and Shiang-Tai Lin, “First-principles predictions of vapor−liquid equilibria for pure and mixture fluids from the combined use of cubic equations of state and solvation calculations”. Ind. Eng. Chem. Res, Vol 48, pp. 3197-3205, 2009.
[24]. C. M. Hsieh and S. T. Lin, “Prediction of liquid-liquid equilibrium from the Peng-Robinson plus COSMOSAC equation of state”. Chem. Eng. Sci., Vol 65, pp. 1955-1963, 2010.
[25]. L. H. Wang, C. M. Hsieh, and S. T. Lin, “Improved prediction of vapor pressure for pure liquids and solids from the PR plus COSMOSAC equation of state”. Ind. Eng. Chem. Res, Vol 54, pp. 10115-10125, 2015.
[26]. C. M. Hsieh and S. T. Lin, “Prediction of 1-octanol-water partition coefficient and infinite dilution activity coefficient in water from the PR plus COSMOSAC model”. Fluid Phase Equilib., Vol 285, pp. 8-14, 2009.
[27]. C. M. Hsieh and S. T. Lin, “First-principles prediction of phase equilibria using the PR plus COSMOSAC equation of state”. Asia-Pac. J. Chem. Eng., Vol 7, pp. S1-S10, 2012.
[28]. C. Y. Chen, et al., “Prediction of solid-liquid-gas equilibrium for binary mixtures of carbon dioxide plus organic compounds from approaches based on the COSMO-SAC model”. J. Supercrit. Fluids, Vol 133, pp. 318-329, 2018.
[29]. Hsin-Hao Liang, et al., “Improvement to PR+COSMOSAC EOS for predicting the vapor pressure of nonelectrolyte organic solids and liquids”. Ind. Eng. Chem. Res, Vol 58, pp. 5030-5040, 2019.
[30]. M. J. Frisch, et al., "Gaussian 09 Rev. B.01". Wallingford, CT, 2009.
[31]. E. Mullins, et al., “Sigma-profile database for using COSMO-based thermodynamic methods”. Ind. Eng. Chem. Res, Vol 45, pp. 4389-4415, 2006.
[32]. E. Mullins, et al., “Sigma profile database for predicting solid solubility in pure and mixed solvent mixtures for organic pharmacological compounds with COSMO-based thermodynamic methods”. Ind. Eng. Chem. Res, Vol 47, pp. 1707-1725, 2008.
[33]. VT-database. https://www.design.che.vt.edu/VT-Databases.html.
[34]. "DMol3". Accelrys Inc., San Diego, CA, 1999.
[35]. T. Holderbaum and J. Gmehling, “PSRK - A group contribution equation of state based on UNIFAC”. Fluid Phase Equilib., Vol 70, pp. 251-265, 1991.
[36]. Dortmund Data Bank. www.ddbst.com.
[37]. K. Fischer and J. Gmehling, “Further development, status and results of the PSRK method for the prediction of vapor-liquid equilibria and gas solubilities”. Fluid Phase Equilib., Vol 121, pp. 185-206, 1996.
[38]. J. Gmehling, J. D. Li, and K. Fischer, “Further development of the PSRK model for the prediction of gas solubilities and vapor-liquid-equilibria at low and high pressures II”. Fluid Phase Equilib., Vol 141, pp. 113-127, 1997.
[39]. S. Horstmann, K. Fischer, and J. Gmehling, “PSRK group contribution equation of state: revision and extension III”. Fluid Phase Equilib., Vol 167, pp. 173-186, 2000.
[40]. S. Horstmann, et al., “PSRK group contribution equation of state: comprehensive revision and extension IV, including critical constants and alpha-function parameters for 1000 components”. Fluid Phase Equilib., Vol 227, pp. 157-164, 2005.
[41]. K. G. Joback and R. C. Reid, “Estimation of pure-component properties from group-contributions ”. Chem. Eng. Commun., Vol 57, pp. 233-243, 1987.
[42]. L. Constantinou and R. Gani, “New group-contribution method for estimating properties of pure compounds”. Aiche J., Vol 40, pp. 1697-1710, 1994.
[43]. J. Marrero and R. Gani, “Group-contribution based estimation of pure component properties”. Fluid Phase Equilib., Vol 183, pp. 183-208, 2001.
[44]. Y. Nannoolal, et al., “Estimation of pure component properties Part 1. Estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and group interactions”. Fluid Phase Equilib., Vol 226, pp. 45-63, 2004.
[45]. Y. Nannoolal, J. Rarey, and D. Ramjugernath, “Estimation of pure component properties. Part 2. Estimation of critical property data by group contribution”. Fluid Phase Equilib., Vol 252, pp. 1-27, 2007.
[46]. Byung Ik Lee and Michael G. Kesler, “A generalized thermodynamic correlation based on three‐parameter corresponding states”. Aiche J., Vol 21, pp. 510-527, 1975.
[47]. DIPPR Database. https://www.aiche.org/dippr.
[48]. 梁興豪,「探討不同量子化學方法對PR+COSMOSAC狀態方程式應用於預測純物質及混合流體相行為之影響」,國立中央大學,碩士論文,2018。
[49]. Philippos Coutsikos, Kostis Magoulas, and Dimitrios Tassios, “Solubilities of p-quinone and 9,10-anthraquinone in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 42, pp. 463-466, 1997.
[50]. Alberto Stassi, et al., “Assessment of solubility of ketoprofen and vanillic acid in supercritical CO2 under dynamic conditions”. J. Chem. Eng. Data, Vol 45, pp. 161-165, 2000.
[51]. Zhen Huang, et al., “Solubility of aspirin in supercritical carbon dioxide with and without acetone”. J. Chem. Eng. Data, Vol 49, pp. 1323-1327, 2004.
[52]. Keith P Johnston, David H Ziger, and Charles A Eckert, “Solubilities of hydrocarbon solids in supercritical fluids. The augmented van der Waals treatment”. Ind. Eng. Chem. Fundam., Vol 21, pp. 191-197, 1982.
[53]. David J. Miller, et al., “Solubility of polycyclic aromatic hydrocarbons in supercritical carbon dioxide from 313 K to 523 K and pressures from 100 bar to 450 bar”. J. Chem. Eng. Data, Vol 41, pp. 779-786, 1996.
[54]. Simon S. T. Ting, et al., “Solubility of naproxen in supercritical carbon dioxide with and without cosolvents”. Ind. Eng. Chem. Res, Vol 32, pp. 1471-1481, 1993.
[55]. E. Sahle-Demessie, et al., “Solubility of organic biocides in supercritical CO2 and CO2 + cosolvent mixtures”. J. Chem. Eng. Data, Vol 48, pp. 541-547, 2003.
[56]. R. Murga, et al., “Solubility of three hydroxycinnamic acids in supercritical carbon dioxide”. J. Supercrit. Fluids, Vol 27, pp. 239-245, 2003.
[57]. R. Murga, et al., “Solubility of some phenolic compounds contained in grape seeds, in supercritical carbon dioxide”. J. Supercrit. Fluids, Vol 23, pp. 113-121, 2002.
[58]. A. Cortesi, et al., “Effect of chemical structure on the solubility of antioxidants in supercritical carbon dioxide: experimental data and correlation”. J. Supercrit. Fluids, Vol 14, pp. 139-144, 1999.
[59]. Ruth Murga, et al., “Solubility of syringic and vanillic acids in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 49, pp. 779-782, 2004.
[60]. S. J. Macnaughton and N. R. Foster, “Solubility of DDT and 2,4-DIN supercritical carbon-dioxide and supercritical carbon-dioxide saturated with water ”. Ind. Eng. Chem. Res, Vol 33, pp. 2757-2763, 1994.
[61]. Z. Huang, S. Kawi, and Y. C. Chiew, “Solubility of cholesterol and its esters in supercritical carbon dioxide with and without cosolvents”. J. Supercrit. Fluids, Vol 30, pp. 25-39, 2004.
[62]. P. Alessi, et al., “Particle production of steroid drugs using supercritical fluid processing”. Ind. Eng. Chem. Res, Vol 35, pp. 4718-4726, 1996.
[63]. William J. Schmitt and Robert C. Reid, “Solubility of monofunctional organic solids in chemically diverse supercritical fluids”. J. Chem. Eng. Data, Vol 31, pp. 204-212, 1986.
[64]. Y. P. Chen, Y. M. Chen, and M. Tang, “Solubilities of cinnamic acid, phenoxyacetic acid and 4-methoxyphenylacetic acid in supercritical carbon dioxide”. Fluid Phase Equilib., Vol 275, pp. 33-38, 2009.
[65]. SL Jimmy Yun, et al., “Solubility of cholesterol in supercritical carbon dioxide”. Ind. Eng. Chem. Res, Vol 30, pp. 2476-2482, 1991.
[66]. G. I. Burgos-Solorzano, J. F. Brennecke, and M. A. Stadtherr, “Solubility measurements and modeling of molecules of biological and pharmaceutical interest with supercritical CO2”. Fluid Phase Equilib., Vol 220, pp. 57-69, 2004.
[67]. M. Johannsen and G. Brunner, “Solubility of the xanthines caffeine, theophylline and theobromine in supercritical carbon-dioxide”. Fluid Phase Equilib., Vol 95, pp. 215-226, 1994.
[68]. Stuart J. Macnaughton, et al., “Solubility of anti-inflammatory drugs in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 41, pp. 1083-1086, 1996.
[69]. James W. Hampson, et al., “Solubility of three veterinary sulfonamides in supercritical carbon dioxide by a recirculating equilibrium method”. J. Chem. Eng. Data, Vol 44, pp. 1222-1225, 1999.
[70]. Xing, et al., “Solubility of artemisinin in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 48, pp. 330-332, 2003.
[71]. Yadollah Yamini, Jalal Hassan, and Soheila Haghgo, “Solubilities of some nitrogen-containing drugs in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 46, pp. 451-455, 2001.
[72]. Zeljko Knez, et al., “Solubility of nifedipine and nitrendipine in supercritical CO2”. J. Chem. Eng. Data, Vol 40, pp. 216-220, 1995.
[73]. Ana Rita C. Duarte, et al., “Solubility of flurbiprofen in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 49, pp. 449-452, 2004.
[74]. Rajasekhar Ch, Chandrasekhar Garlapati, and Giridhar Madras, “Solubility of n-(4-ethoxyphenyl)ethanamide in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 55, pp. 1437-1440, 2010.
[75]. Aziz Garmroodi, Jalal Hassan, and Yadollah Yamini, “Solubilities of the drugs benzocaine, metronidazole benzoate, and naproxen in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 49, pp. 709-712, 2004.
[76]. Mehdi Asghari-Khiavi and Yadollah Yamini, “Solubility of the drugs bisacodyl, methimazole, methylparaben, and iodoquinol in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 48, pp. 61-65, 2003.
[77]. Ligia Barna, et al., “Solubility of flouranthene, chrysene, and triphenylene in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 41, pp. 1466-1469, 1996.
[78]. Mark McHugh and Michael E. Paulaitis, “Solid solubilities of naphthalene and biphenyl in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 25, pp. 326-329, 1980.
[79]. Yadollah Yamini and Naader Bahramifar, “Solubility of polycyclic aromatic hydrocarbons in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 45, pp. 53-56, 2000.
[80]. Anatoly Kramer and George Thodos, “Solubility of 1-octadecanol and stearic acid in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 34, pp. 184-187, 1989.
[81]. Jun-Shun Yau and Fuan-Nan Tsai, “Solubilities of 1-eicosanol and eicosanoic acid in supercritical carbon dioxide from 308.2 to 328.2 K at pressures to 21.26 MPa”. J. Chem. Eng. Data, Vol 39, pp. 827-829, 1994.
[82]. Darrell L. Sparks, et al., “Solubility of azelaic acid in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 52, pp. 1246-1249, 2007.
[83]. M. Charoenchaitrakool, et al., “Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals”. Ind. Eng. Chem. Res, Vol 39, pp. 4794-4802, 2000.
[84]. Petra Kotnik, Mojca Škerget, and Željko Knez, “Solubility of nicotinic acid and nicotinamide in carbon dioxide at T = (313.15 to 373.15) K and p = (5 to 30) MPa: experimental data and correlation”. J. Chem. Eng. Data, Vol 56, pp. 338-343, 2011.
[85]. Julián García-González, et al., “Solubilities of phenol and pyrocatechol in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 46, pp. 918-921, 2001.
[86]. K. W. Cheng, M. Tang, and Y. P. Chen, “Solubilities of benzoin, propyl 4-hydroxybenzoate and mandelic acid in supercritical carbon dioxide”. Fluid Phase Equilib., Vol 201, pp. 79-96, 2002.
[87]. H. R. Li, et al., “Determination, correlation and prediction of the solubilities of niflumic acid, clofenamic acid and tolfenamic acid in supercritical CO2”. Fluid Phase Equilib., Vol 392, pp. 95-103, 2015.
[88]. Ruth A. Van Leer and Michael E. Paulaitis, “Solubilities of phenol and chlorinated phenols in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 25, pp. 257-259, 1980.
[89]. A. Vatanara, et al., “Solubility of some inhaled glucocorticoids in supercritical carbon dioxide”. J. Supercrit. Fluids, Vol 33, pp. 21-25, 2005.
[90]. J. R. Dean, et al., “Estimation and determination of steroid solubility in supercritical carbon dioxide”. Analyst, Vol 120, pp. 2153-2157, 1995.
[91]. M. Hojjati, et al., “Solubility of some statin drugs in supercritical carbon dioxide and representing the solute solubility data with several density-based correlations”. J. Supercrit. Fluids, Vol 41, pp. 187-194, 2007.
[92]. A. Z. Hezave, S. Aftab, and F. Esmaeilzadeh, “Solubility of sulindac in the supercritical carbon dioxide: Experimental and modeling approach”. J. Supercrit. Fluids, Vol 68, pp. 39-44, 2012.
[93]. M. H. Hosseini, N. Alizadeh, and A. R. Khanchi, “Solubility analysis of clozapine and lamotrigine in supercritical carbon dioxide using static system”. J. Supercrit. Fluids, Vol 52, pp. 30-35, 2010.
[94]. Y. Yamini, J. Arab, and M. Asghari-khiavi, “Solubilities of phenazopyridine, propranolol, and methimazole in supercritical carbon dioxide”. J. Pharm. Biomed. Anal., Vol 32, pp. 181-187, 2003.
[95]. Ali Zeinolabedini Hezave and Feridun Esmaeilzadeh, “Solubility measurement of diclofenac acid in the supercritical CO2”. J. Chem. Eng. Data, Vol 57, pp. 1659-1664, 2012.
[96]. Randy D. Weinstein, Joseph J. Gribbin, and Kenneth R. Muske, “Solubility and salting behavior of several β-adrenergic blocking agents in liquid and supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 50, pp. 226-229, 2005.
[97]. Frank P. Lucien and Neil R. Foster, “Influence of matrix composition on the solubility of hydroxybenzoic acid Isomers in supercritical carbon dioxide”. Ind. Eng. Chem. Res, Vol 35, pp. 4686-4699, 1996.
[98]. W. M. Li, et al., “Single-component and mixture solubilities of ethyl p-hydroxybenzoate and ethyl p-aminobenzoate in supercritical CO2”. Fluid Phase Equilib., Vol 264, pp. 93-98, 2008.
[99]. R. F. Rodrigues, et al., “Coumarin solubility and extraction from emburana (Torresea cearensis) seeds with supercritical carbon dioxide”. J. Supercrit. Fluids, Vol 43, pp. 375-382, 2008.
[100]. Y. M. Chen and Y. P. Chen, “Measurements for the solid solubilities of antipyrine, 4-aminoantipyrine and 4-dimethylaminoantipyrine in supercritical carbon dioxide”. Fluid Phase Equilib., Vol 282, pp. 82-87, 2009.
[101]. J. L. Li, et al., “Equilibrium solubilities of a p-toluenesulfonamide and sulfanilamide mixture in supercritical carbon dioxide with and without ethanol”. J. Supercrit. Fluids, Vol 52, pp. 11-17, 2010.
[102]. Luigi Manna and Mauro Banchero, “Solubility of tolbutamide and chlorpropamide in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 63, pp. 1745-1751, 2018.
[103]. Z. Huang, et al., “The solubilities of xanthone and xanthene in supercritical carbon dioxide: Structure effect”. J. Supercrit. Fluids, Vol 36, pp. 91-97, 2005.
[104]. Helene Perrotin-Brunel, et al., “Solubility of cannabinol in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 55, pp. 3704-3707, 2010.
[105]. Rogério Favareto, et al., “Phase equilibria of acrylonitrile and p-bromobenzaldehyde in carbon dioxide”. J. Chem. Eng. Data, Vol 53, pp. 1080-1084, 2008.
[106]. Y. Yamini, et al., “Solubility of dihydroxybenzene isomers in supercritical carbon dioxide”. Fluid Phase Equilib., Vol 152, pp. 299-305, 1998.
[107]. J. W. Chen and F. N. Tsai, “Solubilities of methoxybenzoic acid isomer in supercritical carbon dioxide”. Fluid Phase Equilib., Vol 107, pp. 189-200, 1995.
[108]. Q. S. Li, et al., “Solubility of solid solutes in supercritical carbon dioxide with and without cosolvents”. Fluid Phase Equilib., Vol 207, pp. 183-192, 2003.
[109]. H. Asiabi, et al., “Measurement and correlation of the solubility of two steroid drugs in supercritical carbon dioxide using semi empirical models”. J. Supercrit. Fluids, Vol 78, pp. 28-33, 2013.
[110]. A. G. Reveco-Chilla, et al., “Solubility of menadione and dichlone in supercritical carbon dioxide”. Fluid Phase Equilib., Vol 423, pp. 84-92, 2016.
[111]. Y. M. Chen, et al., “Solid solubility of antilipemic agents and micronization of gemfibrozil in supercritical carbon dioxide”. J. Supercrit. Fluids, Vol 52, pp. 175-182, 2010.
[112]. Tongju Liu, et al., “Solubility of triphenylmethyl chloride and triphenyltin chloride in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 54, pp. 1913-1915, 2009.
[113]. Chandrasekhar Garlapati and Giridhar Madras, “Solubilities of dodecanoic and tetradecanoic acids in supercritical CO2 with and without entrainers”. J. Chem. Eng. Data, Vol 53, pp. 2637-2641, 2008.
[114]. Chandrasekhar Garlapati and Giridhar Madras, “Solubilities of hexadecanoic and octadecanoic acids in supercritical CO2 with and without cosolvents”. J. Chem. Eng. Data, Vol 53, pp. 2913-2917, 2008.
[115]. Eduardo Pérez, et al., “High-pressure phase equilibria for the binary system carbon dioxide+dibenzofuran”. J. Supercrit. Fluids, Vol 46, pp. 238-244, 2008.
[116]. Simon Bristow, Boris Y. Shekunov, and Peter York, “Solubility analysis of drug compounds in supercritical carbon dioxide using static and dynamic extraction systems”. Ind. Eng. Chem. Res, Vol 40, pp. 1732-1739, 2001.
[117]. Frank P. Lucien and Neil R. Foster, “Solubilities of mixed hydroxybenzoic acid Isomers in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 43, pp. 726-731, 1998.
[118]. Zhimin Liu, et al., “Solubility of organic acids in ethyl acetate expanded with CO2”. Fluid Phase Equilib., Vol 167, pp. 123-130, 2000.
[119]. L. Brandt, et al., “Solubility and density measurements of palmitic acid in supercritical carbon dioxide plus alcohol mixtures”. Fluid Phase Equilib., Vol 289, pp. 72-79, 2010.
[120]. M. H. Zhong, B. X. Han, and H. K. Yan, “Solubility of stearic acid in supercritical CO2 with cosolvents”. J. Supercrit. Fluids, Vol 10, pp. 113-118, 1997.
[121]. Z. Huang, S. Kawi, and Y. C. Chiew, “Solubility of cholesterol and its esters in supercritical carbon dioxide with and without cosolvents”. J. Supercrit. Fluids, Vol 30, pp. 25-39, 2004.
[122]. Neil R. Foster, et al., “Polar and nonpolar cosolvent effects on the solubility of cholesterol in supercritical fluids”. Ind. Eng. Chem. Res, Vol 32, pp. 2849-2853, 1993.
[123]. Harcharan Singh, et al., “Solubility of cholesterol in supercritical ethane and binary gas mixtures containing ethane”. Ind. Eng. Chem. Res, Vol 32, pp. 2841-2848, 1993.
[124]. William E. Hollar and Paul Ehrlich, “Solubility of naphthalene in mixtures of carbon dioxide and ethane”. J. Chem. Eng. Data, Vol 35, pp. 271-275, 1990.
[125]. G. R. Smith and C. J. Wormald, “Solubilities of naphthalene in (CO2 + C2H6) and (CO2 + C3H8) up to 333 K and 17.7 MPa”. Fluid Phase Equilib., Vol 57, pp. 205-222, 1990.
[126]. R. M. Lemert and K. P. Johnston, “Solubilities and selectivities in supercritical fluid mixtures near critical end-points”. Fluid Phase Equilib., Vol 59, pp. 31-55, 1990.
[127]. D. J. Dixon and K. P. Johnston, “Molecular thermodynamics of solubilities in gas antisolcent crystallization”. Aiche J., Vol 37, pp. 1441-1449, 1991.
[128]. John G. Van Alsten and Charles A. Eckert, “Effect of entrainers and of solute size and polarity in supercritical fluid solutions”. J. Chem. Eng. Data, Vol 38, pp. 605-610, 1993.
[129]. Eduardo Pérez, et al., “Cosolvent effect of methanol and acetic acid on dibenzofuran solubility in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 53, pp. 2649-2653, 2008.
[130]. J. M. Dobbs, et al., “Modification of supercritical fluid phase behavior using polar cosolvents”. Ind. Eng. Chem. Res, Vol 26, pp. 56-65, 1987.
[131]. Joseph M. Dobbs and Keith P. Johnston, “Selectivities in pure and mixed supercritical fluid solvents”. Ind. Eng. Chem. Res, Vol 26, pp. 1476-1482, 1987.
[132]. J. S. Jin, et al., “Solubilities of benzoic acid in supercritical CO2 with mixed cosolvent”. Fluid Phase Equilib., Vol 226, pp. 9-13, 2004.
[133]. Janette Mendez-Santiago and Amyn S. Teja, “Solubility of benzoic acid in mixtures of CO2 + hexane”. J. Chem. Eng. Data, Vol 57, pp. 3438-3442, 2012.
[134]. William J. Schmitt and Robert C. Reid, “The use of entrainers in modifying the solubility of phenanthrene and benzoic acid in supercritical carbon dioxide and ethane”. Fluid Phase Equilib., Vol 32, pp. 77-99, 1986.
[135]. Zhen Huang, et al., “Solubility of aspirin in supercritical carbon dioxide/alcohol mixtures”. Fluid Phase Equilib., Vol 237, pp. 9-15, 2005.
[136]. Gurdev S. Gurdial, et al., “Influence of chemical modifiers on the solubility of o- and m-hydroxybenzoic acid in supercritical carbon dioxide”. Ind. Eng. Chem. Res., Vol 32, pp. 1488-1497, 1993.
[137]. Zhimin Liu, et al., “Solubility of hydroxybenzoic acid isomers in ethyl acetate expanded with CO2”. J. Supercrit. Fluids, Vol 18, pp. 111-119, 2000.
[138]. Amparo Cháfer, et al., “trans-Cinnamic acid solubility enhancement in the presence of ethanol as a supercritical CO2 cosolvent”. J. Chem. Eng. Data, Vol 54, pp. 2263-2268, 2009.
[139]. Jun-su Jin, et al., “Solubility of propyl p-hydroxybenzoate in supercritical carbon dioxide with and without a cosolvent”. J. Chem. Eng. Data, Vol 50, pp. 801-803, 2005.
[140]. Richard M. Lemert and Keith P. Johnston, “Chemical complexing agents for enhanced solubilities in supercritical fluid carbon dioxide”. Ind. Eng. Chem. Res, Vol 30, pp. 1222-1231, 1991.
[141]. Chandrasekhar Garlapati and Giridhar Madras, “Solubilities of some chlorophenols in supercritical CO2 in the presence and absence of cosolvents”. J. Chem. Eng. Data, Vol 55, pp. 273-277, 2010.
[142]. Yoshio Iwai, et al., “Measurement of entrainer effects of water and ethanol on solubility of caffeine in supercritical carbon dioxide by FT-IR spectroscopy”. J. Supercrit. Fluids, Vol 38, pp. 312-318, 2006.
[143]. Monika Johannsen and Gerd Brunner, “Measurements of solubilities of xanthines in supercritical carbon dioxide + methanol”. J. Chem. Eng. Data, Vol 40, pp. 431-434, 1995.
指導教授 謝介銘(Chieh-Ming Hsieh) 審核日期 2019-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明