博碩士論文 106324052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.226.245.48
姓名 李奕徵(Yi-Cheng Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討培養溫度對Amycolatopsis thermoflava轉化阿魏酸生產香草醛的影響
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-9-1以後開放)
摘要(中) 香草醛(Vanillin, 4-Hydroxy-3-methoxybenzaldehyde),又名香蘭素,其為香草莢氣味的主要來源,香草莢是世界上最受歡迎且使用最廣泛的香料之一,獨特的香氣使得它在許多領域被廣泛應用。目前市場上供應的香草醛主要分為化學合成香草醛和天然香草醛,化學合成香草醛在生產過程中,會對環境產生嚴重汙染,而天然香草醛因昂貴且量少,無法滿足市場需求。因此,近年來開始積極研究利用微生物發酵生產香草醛的方法,以取代化學合成香草醛及滿足消費者對天然香草醛的需求。阿魏酸是生物合成香草醛的理想原料,因其便宜易取得,且在農產廢棄物中含量豐富。利用Amycolatopsis thermoflava轉化阿魏酸生產香草醛,可帶來豐厚商業利益,也可解決農產廢棄物所帶來的環境問題,故兼具了商業應用及環境保護雙重效益。
在微生物發酵過程中,環境溫度會極大地影響微生物的生理狀態及發酵行為,故本論文的目的是探討培養溫度對Amycolatopsis thermoflava轉化阿魏酸生產香草醛的影響。單一溫度實驗結果顯示,在發酵初期培養溫度為45℃可得最大菌重濃度,而培養溫度為35℃可得最大香草醛濃度458 mg/L,相較於培養溫度45℃的操作提升209%。藉由兩階段溫度操作提升香草醛產量,第一階段溫度設定45℃適合菌重增長,然後第二階段調整至35℃以利香草醛生成,在此操作下獲得最大香草醛產量為681 mg/L,相較於單一培養溫度35℃的操作提升49%。透過調控培養溫度可有效提升香草醛之產量,且能更加完善Amycolatopsis thermoflava轉化阿魏酸生產香草醛的研究。
摘要(英) Vanillin (3-methoxy-4-hydroxybenzaldehyde) is one of the major constituents of ‘‘natural vanilla’’ flavor responsible for its characteristic aroma and is the most widely used flavor ingredient in the cosmetics and food industries. The price of ‘‘natural’’ vanillin is very high compared to the chemically synthesized form, mainly due to the limited availability of vanilla pods, which cannot meet the demand of the growing global market for natural vanillin, search for attractive alternative resource is important. Fermentation products are from microorganisms, which are generally considered as natural products. However, only vanillins biotechnologically produced from ferulic acid are considered as food-grade additives by most food safety control authorities worldwide. Furthermore, ferulic acid is rich in agricultural wastes. The microbial fermentation produces high value-added products from inexpensive feedstock such as agricultural wastes, so the cost of production is relatively low, and is more environmental friendly. It is consistent with the concept of sustainable development.
In microbial fermentation procedures, environmental temperature will greatly affect not only the physiological status but also the behavior of fermentation. Ergo, the aim of this study was to investigate the effects of culture temperature on the production of vanillin from ferulic acid by Amycolatopsis thermoflava. The results of experiments showed that the maximum biomass concentration when the culture temperature is 45℃ at the initial stage of fermentation. The optimal vanillin production temperature was 35℃. In this optimal operation, the yield and productivity of vanillin were the highest among other operations, the production of vanillin was 458 mg/L, which was about two hundred and nine percent higher than that obtained from the operation of which culture temperature was fixed at 45℃. Therefore, using the two-stage culture temperature operation, the first stage culture temperature was set at 45℃ to cause more biomass, and then the second stage culture temperature was shifted to 35℃ to enhance the production of vanillin. In this operation, the production of vanillin was 681 mg/L, which was about forty nine percent higher than that obtained from the operation of which culture temperature was fixed at 35℃. As a result, adjusting the culture temperature can make the product formation approaching the ideal type, thereby improving and enhancing the fermentation performance.
關鍵字(中) ★ Amycolatopsis thermoflava
★ 阿魏酸
★ 香草醛
★ 溫度
關鍵字(英) ★ Amycolatopsis thermoflava
★ Ferulic acid
★ Vanillin
★ Temperature
論文目次 中文摘要.........i
ABSTRACT.........iii
誌謝.........v
目錄.........vi
圖目錄.........x
表目錄.........xiii
一、緒論.........1
1-1 研究背景.........1
1-2 研究動機.........4
1-3 研究目的.........6
二、文獻回顧.........7
2-1 香莢蘭介紹.........7
2-2 香草醛介紹.........10
2-2-1 香草醛基本性質.........10
2-2-2 香草醛市場價值.........11
2-2-3 香草醛生產方法.........13
2-3 香草酸介紹.........17
2-4 阿魏酸介紹.........18
2-5 實驗菌株介紹.........19
2-6 影響發酵表現的物理化學因子.........21
2-6-1 碳源.........21
2-6-2 氮源.........22
2-6-3 無機鹽類與微量元素.........22
2-6-4 酸鹼值.........22
2-6-5 攪拌速率.........23
2-6-6 溫度.........23
2-7 農產廢棄物提取阿魏酸.........24
三、材料與方法.........27
3-1實驗規劃.........27
3-2 實驗材料.........28
3-2-1 實驗菌株.........28
3-2-2 實驗藥品.........29
3-2-3 實驗儀器與設備.........30
3-3 實驗方法.........32
3-3-1 菌種保存.........32
3-3-2 菌種固態培養.........32
3-3-3 液態種瓶培養.........33
3-3-4 香草醛生產的培養溫度實驗.........34
3-3-5 香草醛生產的兩階段培養溫度實驗.........35
3-3-6 鹼處理提取阿魏酸.........37
3-4 分析方法.........39
3-3-1 菌重濃度分析.........39
3-4-2 pH值分析.........40
3-4-3 還原糖濃度分析.........40
3-4-4 阿魏酸、香草醛和香草酸濃度分析.........42
四、結果與討論.........45
4-1 不同培養溫度對香草醛生產的影響.........45
4-1-1 不同培養溫度對Amycolatopsis thermoflava生長的影響...45
4-1-2 不同溫度對轉化阿魏酸生產香草醛和香草酸的影響.........48
4-1-3 不同培養溫度的發酵動力曲線.........50
4-2 兩階段溫度對香草醛生產的影響.........55
4-2-1 兩階段溫度對Amycolatopsis thermoflava生長的影響...55
4-2-2 兩階段溫度對轉化阿魏酸生產香草醛和香草酸的影響......58
4-2-3 兩階段溫度的發酵動力曲線.........60
4-3 不同的鹼處理條件對阿魏酸提取之影響.........65
4-3-1 不同提取時間對阿魏酸提取量的影響.........65
4-3-2 不同提取溫度對阿魏酸提取量的影響.........66
4-3-3 不同氫氧化鈉濃度對阿魏酸提取量的影響.........67
4-3-4 不同固液比對阿魏酸提取量的影響.........68
4-3-5 不同原料對阿魏酸提取量的影響.........69
4-3-6 鹼性溶液重複提取阿魏酸之影響.........70
五、結論與建議.........71
5-1 結論.........71
5-2 建議.........72
參考文獻.........74
參考文獻 [1] A. K. Sinha, U. K. Sharma, and N. Sharma, "A comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents," International journal of food sciences and nutrition, vol. 59, no. 4, pp. 299-326, 2008.
[2] 楊文文, 吳秋林, 唐鴻志, and 許平, "“香料皇后”——天然香蘭素生物合成的研究進展," 2013.
[3] N. J. Gallage and B. L. Møller, "Vanillin–bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid," Molecular plant, vol. 8, no. 1, pp. 40-57, 2015.
[4] N. J. Walton, M. J. Mayer, and A. Narbad, "Vanillin," Phytochemistry, vol. 63, no. 5, pp. 505-515, 2003.
[5] G. Banerjee and P. Chattopadhyay, "Vanillin biotechnology: the perspectives and future," Journal of the science of food and agriculture, vol. 99, no. 2, pp. 499-506, 2019.
[6] D. Hua et al., "Enhanced vanillin production from ferulic acid using adsorbent resin," Applied microbiology and biotechnology, vol. 74, no. 4, pp. 783-790, 2007.
[7] A. Muheim, B. Müller, T. Münch, and M. Wetli, "Microbiological process for producing vanillin," ed: Google Patents, 2001.
[8] 陳洋, 唐瑤, 曹婉鑫, and 王俊宏, "阿魏酸的製備及在食品工業中應用的研究進展," 杭州化工, vol. 44, no. 4, p. 12r15, 2014.
[9] M. M. Bomgardner. (2016). The Problem with Vanilla. Available: https://www.scientificamerican.com/article/the-problem-with-vanilla/
[10] 行政院農業委員會, "農業廢棄物介紹," 2017. Available: https://www.coa.gov.tw/showindex.php
[11] 晴洋行, "香草莢," 2017. Available: https://cyhco.tw/
[12] 每日頭條, "全球最貴香料," 2017. Available: https://kknews.cc/zh-tw/food/mkk53ap.html
[13] I. Baqueiro-Peña and J. Á. Guerrero-Beltrán, "Vanilla (Vanilla planifolia Andr.), its residues and other industrial by-products for recovering high value flavor molecules: a review," Journal of applied research on medicinal and aromatic plants, vol. 6, pp. 1-9, 2017.
[14] B. AUTHORITY, "Madagascar Bourbon Vanilla Beans," 2015.
[15] 向富實業股份有限公司, "香蘭素," 2014. Available: https://www.wellwiz.com.tw/
[16] M. B. Hocking, "Vanillin: synthetic flavoring from spent sulfite liquor," Journal of Chemical Education, vol. 74, no. 9, p. 1055, 1997.
[17] K. Harshvardhan, M. Suri, A. Goswami, and T. Goswami, "Biological approach for the production of vanillin from lignocellulosic biomass (Bambusa tulda)," Journal of Cleaner Production, vol. 149, pp. 485-490, 2017.
[18] U. Krings and R. Berger, "Biotechnological production of flavours and fragrances," Applied microbiology and biotechnology, vol. 49, no. 1, pp. 1-8, 1998.
[19] M. Sabisch and D. Smith, "The Complex Regulatory Landscape for Natural Flavor Ingredients," Sigma Aldrich, vol. 1, 2014.
[20] B. A. F. B. Bio Vanillin Market Analysis, Fragrance, Pharmaceuticals) And Segment Forecasts To 2024, "U.S. Bio Vanillin Market volume, by application, 2013 - 2024 (Tons)" 2016.
[21] H. Priefert, J. Rabenhorst, and A. Steinbüchel, "Biotechnological production of vanillin," Applied Microbiology and Biotechnology, vol. 56, no. 3-4, pp. 296-314, 2001.
[22] 符史良, 周江, 黃茂芳, and 李思東, "超臨界 CO2 萃取香草蘭的工藝研究和成分分析," 食品與機械, vol. 2, pp. 12-14, 2002.
[23] M. Fache, B. Boutevin, and S. Caillol, "Vanillin production from lignin and its use as a renewable chemical," ACS sustainable chemistry & engineering, vol. 4, no. 1, pp. 35-46, 2015.
[24] R. H. van den Heuvel, W. A. van den Berg, S. Rovida, and W. J. van Berkel, "Laboratory-evolved vanillyl-alcohol oxidase produces natural vanillin," Journal of Biological Chemistry, vol. 279, no. 32, pp. 33492-33500, 2004.
[25] 鄭志強, 朱書峰, and 孫志浩, "微生物轉化方法生產香草酸與香草醛的初步研究," 工業微生物, vol. 32, no. 4, pp. 1-6, 2002.
[26] K. Vinothiya and N. Ashokkumar, "Modulatory effect of vanillic acid on antioxidant status in high fat diet-induced changes in diabetic hypertensive rats," Biomedicine & Pharmacotherapy, vol. 87, pp. 640-652, 2017.
[27] A. Itoh et al., "Hepatoprotective effect of syringic acid and vanillic acid on CCl4-induced liver injury," Biological and Pharmaceutical Bulletin, vol. 33, no. 6, pp. 983-987, 2010.
[28] A. Muheim and K. Lerch, "Towards a high-yield bioconversion of ferulic acid to vanillin," Applied microbiology and biotechnology, vol. 51, no. 4, pp. 456-461, 1999.
[29] N. Kumar and V. Pruthi, "Potential applications of ferulic acid from natural sources," Biotechnology Reports, vol. 4, pp. 86-93, 2014.
[30] M. N. Clifford, "Chlorogenic acids and other cinnamates–nature, occurrence and dietary burden," Journal of the Science of Food and Agriculture, vol. 79, no. 3, pp. 362-372, 1999.
[31] D. Di Gioia, L. Sciubba, M. Ruzzi, L. Setti, and F. Fava, "Production of vanillin from wheat bran hydrolyzates via microbial bioconversion," Journal of Chemical Technology & Biotechnology, vol. 84, no. 10, pp. 1441-1448, 2009.
[32] 趙建芬, 韋壽蓮, and 嚴子軍, "香蘭素的抑菌性及其應用的初步研究," 微生物學雜誌, vol. 29, no. 6, pp. 73-76, 2009.
[33] J. Rabenhorst and R. Hopp, "Process for the preparation of vanillin and microorganisms suitable therefor," ed: Google Patents, 2000.
[34] C. Fleige, G. Hansen, J. Kroll, and A. Steinbüchel, "Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin," Appl. Environ. Microbiol., vol. 79, no. 1, pp. 81-90, 2013.
[35] Y.-C. HSU, "探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究," National Central University, 2002.
[36] X.-k. Ma and A. J. Daugulis, "Effect of bioconversion conditions on vanillin production by Amycolatopsis sp. ATCC 39116 through an analysis of competing by-product formation," Bioprocess and biosystems engineering, vol. 37, no. 5, pp. 891-899, 2014.
[37] 沈雍智, "探討麩胺酸的添加對於液態發酵生產松杉靈芝菌多醣體和靈芝酸之研究," National Central University, 2005.
[38] W. Yang et al., "Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin," PloS one, vol. 8, no. 6, p. e67339, 2013.
[39] S. Alonso, M. Rendueles, and M. Díaz, "Role of dissolved oxygen availability on lactobionic acid production from whey by Pseudomonas taetrolens," Bioresource technology, vol. 109, pp. 140-147, 2012.
[40] X. k. Ma and A. J. Daugulis, "Transformation of ferulic acid to vanillin using a fed‐batch solid–liquid two‐phase partitioning bioreactor," Biotechnology progress, vol. 30, no. 1, pp. 207-214, 2014.
[41] Y.-C. Lo, "探討培養溫度對 Pseudomonas taetrolens 發酵乳清生產乳糖酸的影響," National Central University, 2017.
[42] Y. Liao, Z.-H. Wei, L. Bai, Z. Deng, and J.-J. Zhong, "Effect of fermentation temperature on validamycin A production by Streptomyces hygroscopicus 5008," Journal of biotechnology, vol. 142, no. 3-4, pp. 271-274, 2009.
[43] C. Peng et al., "A temperature-shift strategy for efficient arachidonic acid fermentation by Mortierella alpina in batch culture," Biochemical Engineering Journal, vol. 53, no. 1, pp. 92-96, 2010.
[44] 張志清, 帥瑾, 周利茗, 呂曉飛, and 姚豔豔, "超聲波輔助堿醇提取麥麩中阿魏酸工藝優化," 食品科學, no. 12, pp. 83-88, 2010.
[45] 何粉霞, 劉國琴, 李琳, 龔逸, and 柳小軍, "超聲波輔助酶法提取小麥麩皮中阿魏酸的工藝研究," 糧食與飼料工業, vol. 2010, no. 8, pp. 25-27, 2010.
[46] 潘媛媛, 廖克儉, and 戴躍玲, "微波法提取當歸中阿魏酸的工藝研究," 遼寧化工, vol. 37, no. 10, pp. 649-650, 2008.
[47] 趙志添, 馬翠, and 廖克儉, "微波法提取升麻中阿魏酸的工藝研究," 化學與生物工程, vol. 28, no. 2, pp. 52-54, 2011.
[48] 劉志臣 and 賈義軍, "超高壓提取洋蔥皮中阿魏酸的研究," 中國調味品, vol. 38, no. 7, pp. 17-20, 2013. 
[49] 侯麗麗, 陳洪海, and 張守勤, "川芎中阿魏酸超高壓提取工藝的優化," 湖北農業科學, vol. 53, no. 9, pp. 2133-2135, 2014.
[50] 姚蘭, 王傳芬, and 蔣文強, "超臨界萃取法提取川芎中阿魏酸的研究及其 HPLC 測定," 齊魯藥事, vol. 25, no. 2, pp. 96-98, 2006.
[51] 丁岩, 唐世雲, 侯漢學, 董海洲, and 張錦麗, "小麥麩皮中酚酸提取方法的研究," 中國食物與營養, vol. 18, no. 6, pp. 52-58, 2012.
[52] 夏文靜, 李飛, 張曉燕, 潘欣, and 陳奕彤, "堿解玉米秸稈製備阿魏酸," 科技與企業, no. 4, pp. 195-196, 2016.
[53] G. L. Miller, "Use of dinitrosalicylic acid reagent for determination of reducing sugar," Analytical chemistry, vol. 31, no. 3, pp. 426-428, 1959.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2019-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明